Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms

We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions-the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-09, Vol.57 (9), p.3411-3425
Hauptverfasser: Chaudhury, K.N., Unser, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3425
container_issue 9
container_start_page 3411
container_title IEEE transactions on signal processing
container_volume 57
creator Chaudhury, K.N.
Unser, M.
description We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions-the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L 2 (R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L 2 (R 2 ), we then discuss a methodology for constructing 2-D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1-D counterpart, we relate the real and imaginary components of these complex wavelets using a multidimensional extension of the HT-the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient fast Fourier transform (FFT)-based filterbank algorithm for implementing the associated complex wavelet transform.
doi_str_mv 10.1109/TSP.2009.2020767
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861133546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4813258</ieee_id><sourcerecordid>2315603351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-b9f8b582b41fdc1d100aed1b87f57b20d361f941d573ce2e6b7e2a75067499983</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCs7pXfBSBPXUmZ9NctShmzBw6ERvIW1foLNrNGkF_3szNiZ4MIck8D558PJNklOMRhgjdb14no8IQipuBIlc7CUDrBjOEBP5frwjTjMuxdthchTCEiHMmMoHydPYtaHzfdnVrk2dTad1U4Dv0oU3bbDOr9K5qX1Yl17NFzTQpbcmQEhNW6UTUzifzep3-PXhODmwpglwsj2Hycv93WI8zWaPk4fxzSwrGeFdVigrCy5JwbCtSlxhhAxUuJDCclEQVNEc2zhBxQUtgUBeCCBGcJQLppSSdJhcbfp-ePfZQ-j0qg4lNI1pwfVBy2gJjyvKy38lZUoQyWiE53_g0vW-jVNomWNMKWd5RGiDSu9C8GD1h69Xxn9rjPQ6Cx2z0Oss9DaL-ORi29eE0jQ2_lVZh907giVRVJDozjauBoBdmUlMCZf0BxhHkL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861133546</pqid></control><display><type>article</type><title>Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Chaudhury, K.N. ; Unser, M.</creator><creatorcontrib>Chaudhury, K.N. ; Unser, M.</creatorcontrib><description>We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions-the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L 2 (R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L 2 (R 2 ), we then discuss a methodology for constructing 2-D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1-D counterpart, we relate the real and imaginary components of these complex wavelets using a multidimensional extension of the HT-the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient fast Fourier transform (FFT)-based filterbank algorithm for implementing the associated complex wavelet transform.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2020767</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytic signal ; Applied sciences ; Approximation ; B-spline multiresolution ; biorthogonal wavelet basis ; Concrete ; Construction ; Continuous wavelet transforms ; Detection, estimation, filtering, equalization, prediction ; directional Hilbert transform ; Discrete wavelet transforms ; dual-tree complex wavelet transform ; Exact sciences and technology ; Fast Fourier transforms ; Filter bank ; Fourier transforms ; Gabor filters ; Gabor function ; Heat treatment ; Hilbert transform ; Information, signal and communications theory ; Mathematical analysis ; Methodology ; Miscellaneous ; Multidimensional systems ; Signal and communications theory ; Signal processing ; Signal, noise ; Spline ; Splines ; Studies ; Telecommunications and information theory ; time-frequency localization ; Transforms ; Wavelet ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2009-09, Vol.57 (9), p.3411-3425</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-b9f8b582b41fdc1d100aed1b87f57b20d361f941d573ce2e6b7e2a75067499983</citedby><cites>FETCH-LOGICAL-c425t-b9f8b582b41fdc1d100aed1b87f57b20d361f941d573ce2e6b7e2a75067499983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4813258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4813258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21829372$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhury, K.N.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions-the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L 2 (R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L 2 (R 2 ), we then discuss a methodology for constructing 2-D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1-D counterpart, we relate the real and imaginary components of these complex wavelets using a multidimensional extension of the HT-the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient fast Fourier transform (FFT)-based filterbank algorithm for implementing the associated complex wavelet transform.</description><subject>Analytic signal</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>B-spline multiresolution</subject><subject>biorthogonal wavelet basis</subject><subject>Concrete</subject><subject>Construction</subject><subject>Continuous wavelet transforms</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>directional Hilbert transform</subject><subject>Discrete wavelet transforms</subject><subject>dual-tree complex wavelet transform</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Filter bank</subject><subject>Fourier transforms</subject><subject>Gabor filters</subject><subject>Gabor function</subject><subject>Heat treatment</subject><subject>Hilbert transform</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Miscellaneous</subject><subject>Multidimensional systems</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spline</subject><subject>Splines</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>time-frequency localization</subject><subject>Transforms</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9LwzAUB_AiCs7pXfBSBPXUmZ9NctShmzBw6ERvIW1foLNrNGkF_3szNiZ4MIck8D558PJNklOMRhgjdb14no8IQipuBIlc7CUDrBjOEBP5frwjTjMuxdthchTCEiHMmMoHydPYtaHzfdnVrk2dTad1U4Dv0oU3bbDOr9K5qX1Yl17NFzTQpbcmQEhNW6UTUzifzep3-PXhODmwpglwsj2Hycv93WI8zWaPk4fxzSwrGeFdVigrCy5JwbCtSlxhhAxUuJDCclEQVNEc2zhBxQUtgUBeCCBGcJQLppSSdJhcbfp-ePfZQ-j0qg4lNI1pwfVBy2gJjyvKy38lZUoQyWiE53_g0vW-jVNomWNMKWd5RGiDSu9C8GD1h69Xxn9rjPQ6Cx2z0Oss9DaL-ORi29eE0jQ2_lVZh907giVRVJDozjauBoBdmUlMCZf0BxhHkL0</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Chaudhury, K.N.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms</title><author>Chaudhury, K.N. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-b9f8b582b41fdc1d100aed1b87f57b20d361f941d573ce2e6b7e2a75067499983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytic signal</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>B-spline multiresolution</topic><topic>biorthogonal wavelet basis</topic><topic>Concrete</topic><topic>Construction</topic><topic>Continuous wavelet transforms</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>directional Hilbert transform</topic><topic>Discrete wavelet transforms</topic><topic>dual-tree complex wavelet transform</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Filter bank</topic><topic>Fourier transforms</topic><topic>Gabor filters</topic><topic>Gabor function</topic><topic>Heat treatment</topic><topic>Hilbert transform</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Miscellaneous</topic><topic>Multidimensional systems</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spline</topic><topic>Splines</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>time-frequency localization</topic><topic>Transforms</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhury, K.N.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaudhury, K.N.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>57</volume><issue>9</issue><spage>3411</spage><epage>3425</epage><pages>3411-3425</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions-the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L 2 (R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L 2 (R 2 ), we then discuss a methodology for constructing 2-D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1-D counterpart, we relate the real and imaginary components of these complex wavelets using a multidimensional extension of the HT-the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient fast Fourier transform (FFT)-based filterbank algorithm for implementing the associated complex wavelet transform.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2020767</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-09, Vol.57 (9), p.3411-3425
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_861133546
source IEEE Electronic Library (IEL)
subjects Analytic signal
Applied sciences
Approximation
B-spline multiresolution
biorthogonal wavelet basis
Concrete
Construction
Continuous wavelet transforms
Detection, estimation, filtering, equalization, prediction
directional Hilbert transform
Discrete wavelet transforms
dual-tree complex wavelet transform
Exact sciences and technology
Fast Fourier transforms
Filter bank
Fourier transforms
Gabor filters
Gabor function
Heat treatment
Hilbert transform
Information, signal and communications theory
Mathematical analysis
Methodology
Miscellaneous
Multidimensional systems
Signal and communications theory
Signal processing
Signal, noise
Spline
Splines
Studies
Telecommunications and information theory
time-frequency localization
Transforms
Wavelet
Wavelet analysis
Wavelet transforms
title Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Hilbert%20Transform%20Pairs%20of%20Wavelet%20Bases%20and%20Gabor-Like%20Transforms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Chaudhury,%20K.N.&rft.date=2009-09-01&rft.volume=57&rft.issue=9&rft.spage=3411&rft.epage=3425&rft.pages=3411-3425&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2020767&rft_dat=%3Cproquest_RIE%3E2315603351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861133546&rft_id=info:pmid/&rft_ieee_id=4813258&rfr_iscdi=true