Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods

In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-02, Vol.57 (2), p.588-599
Hauptverfasser: Rubsamen, M., Gershman, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 2
container_start_page 588
container_title IEEE transactions on signal processing
container_volume 57
creator Rubsamen, M.
Gershman, A.B.
description In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.
doi_str_mv 10.1109/TSP.2008.2008560
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861132157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663945</ieee_id><sourcerecordid>34854762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUxwdRsFbvgpcgqKepefk1ibey7baFrgrbgreQZl4wZWayTWYL_e_NuksPHrwkj_f9fB-8922a90BPAKj5erP-ecIo1X8fqeiL5giMgJaKTr2sNZW8lbr79bp5U8o9pSCEUUfN41nM6OeYpjaF9jTn-OgGcl7mOLpdl4SUyfc0badYq5GscSq1U0H3VL6RZU4jWbmdOPRV3Li8t82JLNM2R8zkLI0uTmR1u75akBXOv1Nf3javghsKvjv8x83t8vxmcdle_7i4Wpxet55rPrfMoZJKdneyp9AZE3jo7zRDYJ3xgKh5Lzww5H2gToAPTCiJKA2AMN57ftx82c_d5PSwxTLbMRaPw-AmTNtidScpV0zoSn7-L8mFlvWUrIIf_wHv66JT3cJqBcAZyK5CdA_5nErJGOwm14vmJwvU7vKyNS-7i8oe8qqWT4e5rng3hOwmH8uzjwF0THBeuQ97LiLisyyU4kZI_gcDe54k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132157</pqid></control><display><type>article</type><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Rubsamen, M. ; Gershman, A.B.</creator><creatorcontrib>Rubsamen, M. ; Gershman, A.B.</creatorcontrib><description>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2008560</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Applied sciences ; Array signal processing ; Computational complexity ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; Direction-of-arrival (DOA) estimation ; Exact sciences and technology ; Fourier transforms ; Geometry ; Information, signal and communications theory ; Manifolds ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Multiple signal classification ; Music ; Nonuniform ; nonuniform sensor arrays ; Performance analysis ; Polynomials ; root-MUSIC ; Sensor arrays ; Separation ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; Spectra ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.588-599</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</citedby><cites>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21172433$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubsamen, M.</creatorcontrib><creatorcontrib>Gershman, A.B.</creatorcontrib><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</description><subject>Acoustic signal processing</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Computational complexity</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>Direction-of-arrival (DOA) estimation</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Information, signal and communications theory</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Nonuniform</subject><subject>nonuniform sensor arrays</subject><subject>Performance analysis</subject><subject>Polynomials</subject><subject>root-MUSIC</subject><subject>Sensor arrays</subject><subject>Separation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFDEUxwdRsFbvgpcgqKepefk1ibey7baFrgrbgreQZl4wZWayTWYL_e_NuksPHrwkj_f9fB-8922a90BPAKj5erP-ecIo1X8fqeiL5giMgJaKTr2sNZW8lbr79bp5U8o9pSCEUUfN41nM6OeYpjaF9jTn-OgGcl7mOLpdl4SUyfc0badYq5GscSq1U0H3VL6RZU4jWbmdOPRV3Li8t82JLNM2R8zkLI0uTmR1u75akBXOv1Nf3javghsKvjv8x83t8vxmcdle_7i4Wpxet55rPrfMoZJKdneyp9AZE3jo7zRDYJ3xgKh5Lzww5H2gToAPTCiJKA2AMN57ftx82c_d5PSwxTLbMRaPw-AmTNtidScpV0zoSn7-L8mFlvWUrIIf_wHv66JT3cJqBcAZyK5CdA_5nErJGOwm14vmJwvU7vKyNS-7i8oe8qqWT4e5rng3hOwmH8uzjwF0THBeuQ97LiLisyyU4kZI_gcDe54k</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Rubsamen, M.</creator><creator>Gershman, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><author>Rubsamen, M. ; Gershman, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signal processing</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Computational complexity</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>Direction-of-arrival (DOA) estimation</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Information, signal and communications theory</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Nonuniform</topic><topic>nonuniform sensor arrays</topic><topic>Performance analysis</topic><topic>Polynomials</topic><topic>root-MUSIC</topic><topic>Sensor arrays</topic><topic>Separation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubsamen, M.</creatorcontrib><creatorcontrib>Gershman, A.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rubsamen, M.</au><au>Gershman, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>588</spage><epage>599</epage><pages>588-599</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2008560</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.588-599
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_861132157
source IEEE Electronic Library (IEL)
subjects Acoustic signal processing
Applied sciences
Array signal processing
Computational complexity
Detection, estimation, filtering, equalization, prediction
Direction of arrival estimation
Direction-of-arrival (DOA) estimation
Exact sciences and technology
Fourier transforms
Geometry
Information, signal and communications theory
Manifolds
Mathematical analysis
Mathematical models
Miscellaneous
Multiple signal classification
Music
Nonuniform
nonuniform sensor arrays
Performance analysis
Polynomials
root-MUSIC
Sensor arrays
Separation
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
Spectra
Studies
Telecommunications and information theory
title Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction-of-Arrival%20Estimation%20for%20Nonuniform%20Sensor%20Arrays:%20From%20Manifold%20Separation%20to%20Fourier%20Domain%20MUSIC%20Methods&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Rubsamen,%20M.&rft.date=2009-02-01&rft.volume=57&rft.issue=2&rft.spage=588&rft.epage=599&rft.pages=588-599&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2008560&rft_dat=%3Cproquest_RIE%3E34854762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861132157&rft_id=info:pmid/&rft_ieee_id=4663945&rfr_iscdi=true