Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods
In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2009-02, Vol.57 (2), p.588-599 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 2 |
container_start_page | 588 |
container_title | IEEE transactions on signal processing |
container_volume | 57 |
creator | Rubsamen, M. Gershman, A.B. |
description | In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique. |
doi_str_mv | 10.1109/TSP.2008.2008560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861132157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663945</ieee_id><sourcerecordid>34854762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUxwdRsFbvgpcgqKepefk1ibey7baFrgrbgreQZl4wZWayTWYL_e_NuksPHrwkj_f9fB-8922a90BPAKj5erP-ecIo1X8fqeiL5giMgJaKTr2sNZW8lbr79bp5U8o9pSCEUUfN41nM6OeYpjaF9jTn-OgGcl7mOLpdl4SUyfc0badYq5GscSq1U0H3VL6RZU4jWbmdOPRV3Li8t82JLNM2R8zkLI0uTmR1u75akBXOv1Nf3javghsKvjv8x83t8vxmcdle_7i4Wpxet55rPrfMoZJKdneyp9AZE3jo7zRDYJ3xgKh5Lzww5H2gToAPTCiJKA2AMN57ftx82c_d5PSwxTLbMRaPw-AmTNtidScpV0zoSn7-L8mFlvWUrIIf_wHv66JT3cJqBcAZyK5CdA_5nErJGOwm14vmJwvU7vKyNS-7i8oe8qqWT4e5rng3hOwmH8uzjwF0THBeuQ97LiLisyyU4kZI_gcDe54k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132157</pqid></control><display><type>article</type><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Rubsamen, M. ; Gershman, A.B.</creator><creatorcontrib>Rubsamen, M. ; Gershman, A.B.</creatorcontrib><description>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2008560</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Applied sciences ; Array signal processing ; Computational complexity ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; Direction-of-arrival (DOA) estimation ; Exact sciences and technology ; Fourier transforms ; Geometry ; Information, signal and communications theory ; Manifolds ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Multiple signal classification ; Music ; Nonuniform ; nonuniform sensor arrays ; Performance analysis ; Polynomials ; root-MUSIC ; Sensor arrays ; Separation ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; Spectra ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.588-599</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</citedby><cites>FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21172433$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubsamen, M.</creatorcontrib><creatorcontrib>Gershman, A.B.</creatorcontrib><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</description><subject>Acoustic signal processing</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Computational complexity</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>Direction-of-arrival (DOA) estimation</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Information, signal and communications theory</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Nonuniform</subject><subject>nonuniform sensor arrays</subject><subject>Performance analysis</subject><subject>Polynomials</subject><subject>root-MUSIC</subject><subject>Sensor arrays</subject><subject>Separation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFDEUxwdRsFbvgpcgqKepefk1ibey7baFrgrbgreQZl4wZWayTWYL_e_NuksPHrwkj_f9fB-8922a90BPAKj5erP-ecIo1X8fqeiL5giMgJaKTr2sNZW8lbr79bp5U8o9pSCEUUfN41nM6OeYpjaF9jTn-OgGcl7mOLpdl4SUyfc0badYq5GscSq1U0H3VL6RZU4jWbmdOPRV3Li8t82JLNM2R8zkLI0uTmR1u75akBXOv1Nf3javghsKvjv8x83t8vxmcdle_7i4Wpxet55rPrfMoZJKdneyp9AZE3jo7zRDYJ3xgKh5Lzww5H2gToAPTCiJKA2AMN57ftx82c_d5PSwxTLbMRaPw-AmTNtidScpV0zoSn7-L8mFlvWUrIIf_wHv66JT3cJqBcAZyK5CdA_5nErJGOwm14vmJwvU7vKyNS-7i8oe8qqWT4e5rng3hOwmH8uzjwF0THBeuQ97LiLisyyU4kZI_gcDe54k</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Rubsamen, M.</creator><creator>Gershman, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</title><author>Rubsamen, M. ; Gershman, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2ae65657b5d01799f3fdb82e1279c1ee83d4c12e3df0a41cf2465ee591149ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signal processing</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Computational complexity</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>Direction-of-arrival (DOA) estimation</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Information, signal and communications theory</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Nonuniform</topic><topic>nonuniform sensor arrays</topic><topic>Performance analysis</topic><topic>Polynomials</topic><topic>root-MUSIC</topic><topic>Sensor arrays</topic><topic>Separation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubsamen, M.</creatorcontrib><creatorcontrib>Gershman, A.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rubsamen, M.</au><au>Gershman, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>588</spage><epage>599</epage><pages>588-599</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, the problem of spectral search-free direction-of-arrival (DOA) estimation in arbitrary nonuniform sensor arrays is addressed. In the first part of the paper, we present a finite-sample performance analysis of the well-known manifold separation (MS) based root-MUSIC technique. Then, we propose a new class of search-free DOA estimation methods applicable to arrays of arbitrary geometry and establish their relationship to the MS approach. Our first technique is referred to as Fourier-domain (FD) root-MUSIC and is based on the fact that the spectral MUSIC function is periodic in angle. It uses the Fourier series to expand this function and reformulate the underlying DOA estimation problem as an equivalent polynomial rooting problem. Our second approach applies the zero-padded inverse Fourier transform to the FD root-MUSIC polynomial to avoid the polynomial rooting step and replace it with a simple line search. Our third technique refines the FD root-MUSIC approach by using weighted least-squares approximation to compute the polynomial coefficients. The proposed techniques are shown to offer substantially improved performance-to-complexity tradeoffs as compared to the MS technique.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2008560</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.588-599 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_861132157 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic signal processing Applied sciences Array signal processing Computational complexity Detection, estimation, filtering, equalization, prediction Direction of arrival estimation Direction-of-arrival (DOA) estimation Exact sciences and technology Fourier transforms Geometry Information, signal and communications theory Manifolds Mathematical analysis Mathematical models Miscellaneous Multiple signal classification Music Nonuniform nonuniform sensor arrays Performance analysis Polynomials root-MUSIC Sensor arrays Separation Signal and communications theory Signal processing Signal processing algorithms Signal, noise Spectra Studies Telecommunications and information theory |
title | Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction-of-Arrival%20Estimation%20for%20Nonuniform%20Sensor%20Arrays:%20From%20Manifold%20Separation%20to%20Fourier%20Domain%20MUSIC%20Methods&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Rubsamen,%20M.&rft.date=2009-02-01&rft.volume=57&rft.issue=2&rft.spage=588&rft.epage=599&rft.pages=588-599&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2008560&rft_dat=%3Cproquest_RIE%3E34854762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861132157&rft_id=info:pmid/&rft_ieee_id=4663945&rfr_iscdi=true |