Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization
We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a shear transformation zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective d...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Solid Earth 2010-05, Vol.115 (B5), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B5 |
container_start_page | |
container_title | Journal of Geophysical Research: Solid Earth |
container_volume | 115 |
creator | Daub, Eric G. Manning, M. Lisa Carlson, Jean M. |
description | We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a shear transformation zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective disorder temperature, and regions with elevated effective temperature have an increased strain rate. STZ theory resolves the dynamic evolution of the effective temperature across the width of the fault zone. Shear bands spontaneously form in the model due to feedbacks amplifying heterogeneities in the initial effective temperature. In dynamic earthquake simulations, strain localization is a mechanism for dynamic fault weakening. A shear band dynamically forms, reduces the sliding stress, and decreases the frictional energy dissipation on the fault. We investigate the effect of the dynamic weakening due to localization in generating pulse‐like, crack‐like, and supershear rupture. Our results illustrate that the additional weakening and reduction of on‐fault energy dissipation due to localization have a significant impact on the initial shear stress required for supershear or pulse‐like rupture to propagate on a fault. |
doi_str_mv | 10.1029/2009JB006388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_861095293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315337061</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4355-10852c3c8fa8cb405ae9c80d74c871cb2cd44aa42444573c7253a63e7d23a3c33</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRsKh3PkAQvDM6e8puLq1oVVpPeEBvlnG7pWtj0u4maH16IynilQPDDMz3_8MMIbsUDimw_IgB5Jd9gIxrvUZ6jMosZQzYOukBFToFxtQm2YnxDdoQMhNAe-T5pimiSws_cweJDWhnqx7LcRKbuQtx6jAkbdbTRYMzl4RmXjfBxeTD19OkG8c6oC-TorJY-C-sfVVuk40Jtt47q7pFHs5O70_O0-H14OLkeJii4FKmFLRklls9QW1fBUh0udUwVsJqRe0rs2MhEAUTQkjFrWKSY8adGjOO3HK-RfY633moFo2LtXmrmlC2K43OKOSS5T_QQQfZUMUY3MTMg3_HsDQUzM_7zN_3tfj-yhNje9EkYGl9_NUwliuRAW053nEfvnDLfz3N5eCuTzMqZKtKO5WPtfv8VWGYmUxxJc3T1cC8wLD_OBrdmVv-DWE3jIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861095293</pqid></control><display><type>article</type><title>Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Daub, Eric G. ; Manning, M. Lisa ; Carlson, Jean M.</creator><creatorcontrib>Daub, Eric G. ; Manning, M. Lisa ; Carlson, Jean M.</creatorcontrib><description>We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a shear transformation zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective disorder temperature, and regions with elevated effective temperature have an increased strain rate. STZ theory resolves the dynamic evolution of the effective temperature across the width of the fault zone. Shear bands spontaneously form in the model due to feedbacks amplifying heterogeneities in the initial effective temperature. In dynamic earthquake simulations, strain localization is a mechanism for dynamic fault weakening. A shear band dynamically forms, reduces the sliding stress, and decreases the frictional energy dissipation on the fault. We investigate the effect of the dynamic weakening due to localization in generating pulse‐like, crack‐like, and supershear rupture. Our results illustrate that the additional weakening and reduction of on‐fault energy dissipation due to localization have a significant impact on the initial shear stress required for supershear or pulse‐like rupture to propagate on a fault.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2009JB006388</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>constitutive laws ; Continental dynamics ; Earth sciences ; Earth, ocean, space ; earthquake dynamics ; Earthquakes ; Energy dissipation ; Exact sciences and technology ; Fault lines ; Geology ; Geophysics ; Plate tectonics ; Rheology ; Seismic activity ; Seismology ; Shear stress ; strain localization</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2010-05, Vol.115 (B5), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4355-10852c3c8fa8cb405ae9c80d74c871cb2cd44aa42444573c7253a63e7d23a3c33</citedby><cites>FETCH-LOGICAL-a4355-10852c3c8fa8cb405ae9c80d74c871cb2cd44aa42444573c7253a63e7d23a3c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JB006388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JB006388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22974601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Daub, Eric G.</creatorcontrib><creatorcontrib>Manning, M. Lisa</creatorcontrib><creatorcontrib>Carlson, Jean M.</creatorcontrib><title>Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a shear transformation zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective disorder temperature, and regions with elevated effective temperature have an increased strain rate. STZ theory resolves the dynamic evolution of the effective temperature across the width of the fault zone. Shear bands spontaneously form in the model due to feedbacks amplifying heterogeneities in the initial effective temperature. In dynamic earthquake simulations, strain localization is a mechanism for dynamic fault weakening. A shear band dynamically forms, reduces the sliding stress, and decreases the frictional energy dissipation on the fault. We investigate the effect of the dynamic weakening due to localization in generating pulse‐like, crack‐like, and supershear rupture. Our results illustrate that the additional weakening and reduction of on‐fault energy dissipation due to localization have a significant impact on the initial shear stress required for supershear or pulse‐like rupture to propagate on a fault.</description><subject>constitutive laws</subject><subject>Continental dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>earthquake dynamics</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Exact sciences and technology</subject><subject>Fault lines</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Plate tectonics</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Shear stress</subject><subject>strain localization</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kNtKw0AQhhdRsKh3PkAQvDM6e8puLq1oVVpPeEBvlnG7pWtj0u4maH16IynilQPDDMz3_8MMIbsUDimw_IgB5Jd9gIxrvUZ6jMosZQzYOukBFToFxtQm2YnxDdoQMhNAe-T5pimiSws_cweJDWhnqx7LcRKbuQtx6jAkbdbTRYMzl4RmXjfBxeTD19OkG8c6oC-TorJY-C-sfVVuk40Jtt47q7pFHs5O70_O0-H14OLkeJii4FKmFLRklls9QW1fBUh0udUwVsJqRe0rs2MhEAUTQkjFrWKSY8adGjOO3HK-RfY633moFo2LtXmrmlC2K43OKOSS5T_QQQfZUMUY3MTMg3_HsDQUzM_7zN_3tfj-yhNje9EkYGl9_NUwliuRAW053nEfvnDLfz3N5eCuTzMqZKtKO5WPtfv8VWGYmUxxJc3T1cC8wLD_OBrdmVv-DWE3jIs</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Daub, Eric G.</creator><creator>Manning, M. Lisa</creator><creator>Carlson, Jean M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201005</creationdate><title>Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization</title><author>Daub, Eric G. ; Manning, M. Lisa ; Carlson, Jean M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4355-10852c3c8fa8cb405ae9c80d74c871cb2cd44aa42444573c7253a63e7d23a3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>constitutive laws</topic><topic>Continental dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>earthquake dynamics</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Exact sciences and technology</topic><topic>Fault lines</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Plate tectonics</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Shear stress</topic><topic>strain localization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daub, Eric G.</creatorcontrib><creatorcontrib>Manning, M. Lisa</creatorcontrib><creatorcontrib>Carlson, Jean M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daub, Eric G.</au><au>Manning, M. Lisa</au><au>Carlson, Jean M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-05</date><risdate>2010</risdate><volume>115</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a shear transformation zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective disorder temperature, and regions with elevated effective temperature have an increased strain rate. STZ theory resolves the dynamic evolution of the effective temperature across the width of the fault zone. Shear bands spontaneously form in the model due to feedbacks amplifying heterogeneities in the initial effective temperature. In dynamic earthquake simulations, strain localization is a mechanism for dynamic fault weakening. A shear band dynamically forms, reduces the sliding stress, and decreases the frictional energy dissipation on the fault. We investigate the effect of the dynamic weakening due to localization in generating pulse‐like, crack‐like, and supershear rupture. Our results illustrate that the additional weakening and reduction of on‐fault energy dissipation due to localization have a significant impact on the initial shear stress required for supershear or pulse‐like rupture to propagate on a fault.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JB006388</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Solid Earth, 2010-05, Vol.115 (B5), p.n/a |
issn | 0148-0227 2169-9313 2156-2202 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_861095293 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | constitutive laws Continental dynamics Earth sciences Earth, ocean, space earthquake dynamics Earthquakes Energy dissipation Exact sciences and technology Fault lines Geology Geophysics Plate tectonics Rheology Seismic activity Seismology Shear stress strain localization |
title | Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse-like,%20crack-like,%20and%20supershear%20earthquake%20ruptures%20with%20shear%20strain%20localization&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Daub,%20Eric%20G.&rft.date=2010-05&rft.volume=115&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JB006388&rft_dat=%3Cproquest_cross%3E2315337061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861095293&rft_id=info:pmid/&rfr_iscdi=true |