Chromium Speciation in Coal and Biomass Co-Combustion Products
Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The infl...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-03, Vol.45 (6), p.2450-2456 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2456 |
---|---|
container_issue | 6 |
container_start_page | 2450 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Stam, Arthur F Meij, Ruud te Winkel, Henk Eijk, Ronald J. van Huggins, Frank E Brem, Gerrit |
description | Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7−28% wood for which ashes exhibited Cr(VI) concentrations of 12−16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO4(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay. |
doi_str_mv | 10.1021/es103361g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_860083261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311158211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-f21dfac17f782dcbb08b7844c36a390bf81d3096ef20754ffefe1e39d9556f443</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiruuHvwDUgQPHqozSZqmF2EtfsGCggreSpom2mXbrEl78N9b3XX34GlgeHhneAk5RrhAoHhpAgJjAt93yBgTCnEiE9wlYwBkccbE24gchDAHAMpA7pMRRca5zMSYXOUf3jV130TPS6Nr1dWujeo2yp1aRKqtouvaNSqEYRHnrin78CuevKt63YVDsmfVIpij9ZyQ19ubl_w-nj3ePeTTWaw4S7vYUqys0pjaVNJKlyXIMpWcayYUy6C0EisGmTCWQppwa401aFhWZUkiLOdsQk5XuUvvPnsTumLuet8OJwspACSjAgd0vkLauxC8scXS143yXwVC8VNUsSlqsCfrwL5sTLWRf80M4GwNVNBqYb1qdR22jmWcQ5JundJh-9T_g997anq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860083261</pqid></control><display><type>article</type><title>Chromium Speciation in Coal and Biomass Co-Combustion Products</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stam, Arthur F ; Meij, Ruud ; te Winkel, Henk ; Eijk, Ronald J. van ; Huggins, Frank E ; Brem, Gerrit</creator><creatorcontrib>Stam, Arthur F ; Meij, Ruud ; te Winkel, Henk ; Eijk, Ronald J. van ; Huggins, Frank E ; Brem, Gerrit</creatorcontrib><description>Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7−28% wood for which ashes exhibited Cr(VI) concentrations of 12−16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO4(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es103361g</identifier><identifier>PMID: 21344896</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Biomass ; Carbon - analysis ; Carbon - chemistry ; Chromium ; Chromium - analysis ; Chromium - chemistry ; Coal ; Coal - analysis ; Coal Ash ; Combustion of heterogeneous mixtures. Incineration ; Combustion. Flame ; Energy ; Energy and the Environment ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; Hazardous Substances - analysis ; Metering. Control ; Molecular structure ; Oxidation ; Particulate Matter - analysis ; Particulate Matter - chemistry ; Phase transitions ; Power Plants ; Spectrum analysis ; Theoretical studies. Data and constants. Metering ; Thermodynamics ; Trace Elements - analysis ; Trace Elements - chemistry ; X-Ray Absorption Spectroscopy</subject><ispartof>Environmental science & technology, 2011-03, Vol.45 (6), p.2450-2456</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-f21dfac17f782dcbb08b7844c36a390bf81d3096ef20754ffefe1e39d9556f443</citedby><cites>FETCH-LOGICAL-a437t-f21dfac17f782dcbb08b7844c36a390bf81d3096ef20754ffefe1e39d9556f443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es103361g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es103361g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23944057$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21344896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stam, Arthur F</creatorcontrib><creatorcontrib>Meij, Ruud</creatorcontrib><creatorcontrib>te Winkel, Henk</creatorcontrib><creatorcontrib>Eijk, Ronald J. van</creatorcontrib><creatorcontrib>Huggins, Frank E</creatorcontrib><creatorcontrib>Brem, Gerrit</creatorcontrib><title>Chromium Speciation in Coal and Biomass Co-Combustion Products</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7−28% wood for which ashes exhibited Cr(VI) concentrations of 12−16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO4(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Biomass</subject><subject>Carbon - analysis</subject><subject>Carbon - chemistry</subject><subject>Chromium</subject><subject>Chromium - analysis</subject><subject>Chromium - chemistry</subject><subject>Coal</subject><subject>Coal - analysis</subject><subject>Coal Ash</subject><subject>Combustion of heterogeneous mixtures. Incineration</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy and the Environment</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Hazardous Substances - analysis</subject><subject>Metering. Control</subject><subject>Molecular structure</subject><subject>Oxidation</subject><subject>Particulate Matter - analysis</subject><subject>Particulate Matter - chemistry</subject><subject>Phase transitions</subject><subject>Power Plants</subject><subject>Spectrum analysis</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermodynamics</subject><subject>Trace Elements - analysis</subject><subject>Trace Elements - chemistry</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LxDAQBuAgiruuHvwDUgQPHqozSZqmF2EtfsGCggreSpom2mXbrEl78N9b3XX34GlgeHhneAk5RrhAoHhpAgJjAt93yBgTCnEiE9wlYwBkccbE24gchDAHAMpA7pMRRca5zMSYXOUf3jV130TPS6Nr1dWujeo2yp1aRKqtouvaNSqEYRHnrin78CuevKt63YVDsmfVIpij9ZyQ19ubl_w-nj3ePeTTWaw4S7vYUqys0pjaVNJKlyXIMpWcayYUy6C0EisGmTCWQppwa401aFhWZUkiLOdsQk5XuUvvPnsTumLuet8OJwspACSjAgd0vkLauxC8scXS143yXwVC8VNUsSlqsCfrwL5sTLWRf80M4GwNVNBqYb1qdR22jmWcQ5JundJh-9T_g997anq0</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Stam, Arthur F</creator><creator>Meij, Ruud</creator><creator>te Winkel, Henk</creator><creator>Eijk, Ronald J. van</creator><creator>Huggins, Frank E</creator><creator>Brem, Gerrit</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110315</creationdate><title>Chromium Speciation in Coal and Biomass Co-Combustion Products</title><author>Stam, Arthur F ; Meij, Ruud ; te Winkel, Henk ; Eijk, Ronald J. van ; Huggins, Frank E ; Brem, Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-f21dfac17f782dcbb08b7844c36a390bf81d3096ef20754ffefe1e39d9556f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Biomass</topic><topic>Carbon - analysis</topic><topic>Carbon - chemistry</topic><topic>Chromium</topic><topic>Chromium - analysis</topic><topic>Chromium - chemistry</topic><topic>Coal</topic><topic>Coal - analysis</topic><topic>Coal Ash</topic><topic>Combustion of heterogeneous mixtures. Incineration</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy and the Environment</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Hazardous Substances - analysis</topic><topic>Metering. Control</topic><topic>Molecular structure</topic><topic>Oxidation</topic><topic>Particulate Matter - analysis</topic><topic>Particulate Matter - chemistry</topic><topic>Phase transitions</topic><topic>Power Plants</topic><topic>Spectrum analysis</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermodynamics</topic><topic>Trace Elements - analysis</topic><topic>Trace Elements - chemistry</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stam, Arthur F</creatorcontrib><creatorcontrib>Meij, Ruud</creatorcontrib><creatorcontrib>te Winkel, Henk</creatorcontrib><creatorcontrib>Eijk, Ronald J. van</creatorcontrib><creatorcontrib>Huggins, Frank E</creatorcontrib><creatorcontrib>Brem, Gerrit</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stam, Arthur F</au><au>Meij, Ruud</au><au>te Winkel, Henk</au><au>Eijk, Ronald J. van</au><au>Huggins, Frank E</au><au>Brem, Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromium Speciation in Coal and Biomass Co-Combustion Products</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>45</volume><issue>6</issue><spage>2450</spage><epage>2456</epage><pages>2450-2456</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7−28% wood for which ashes exhibited Cr(VI) concentrations of 12−16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO4(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21344896</pmid><doi>10.1021/es103361g</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-03, Vol.45 (6), p.2450-2456 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_860083261 |
source | MEDLINE; ACS Publications |
subjects | Air pollution caused by fuel industries Applied sciences Biomass Carbon - analysis Carbon - chemistry Chromium Chromium - analysis Chromium - chemistry Coal Coal - analysis Coal Ash Combustion of heterogeneous mixtures. Incineration Combustion. Flame Energy Energy and the Environment Energy. Thermal use of fuels Evaporation Exact sciences and technology Hazardous Substances - analysis Metering. Control Molecular structure Oxidation Particulate Matter - analysis Particulate Matter - chemistry Phase transitions Power Plants Spectrum analysis Theoretical studies. Data and constants. Metering Thermodynamics Trace Elements - analysis Trace Elements - chemistry X-Ray Absorption Spectroscopy |
title | Chromium Speciation in Coal and Biomass Co-Combustion Products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromium%20Speciation%20in%20Coal%20and%20Biomass%20Co-Combustion%20Products&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Stam,%20Arthur%20F&rft.date=2011-03-15&rft.volume=45&rft.issue=6&rft.spage=2450&rft.epage=2456&rft.pages=2450-2456&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es103361g&rft_dat=%3Cproquest_cross%3E2311158211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860083261&rft_id=info:pmid/21344896&rfr_iscdi=true |