Short-Pulse Dual-Wavelength System Based on Mode-Locked Diode Lasers With a Single Polarization-Maintaining Yb:Fiber Amplifier
In this paper, we report on the development of a short-pulse dual-wavelength source consisting of mode-locked diode lasers and a single Yb-doped double-clad fiber amplifier. Two mode-locked external-cavity semiconductor oscillators operating at a repetition rate of 577 MHz with center wavelengths of...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2009-08, Vol.27 (16), p.3416-3424 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report on the development of a short-pulse dual-wavelength source consisting of mode-locked diode lasers and a single Yb-doped double-clad fiber amplifier. Two mode-locked external-cavity semiconductor oscillators operating at a repetition rate of 577 MHz with center wavelengths of 1040 nm and 1079 nm are synchronized, producing short pulses that are injected into a Yb-doped polarization-maintaining fiber for amplification. Numerical simulations are used to determine the optimal fiber length and seeding configuration for dual-wavelength amplification in the fiber. Each signal is amplified to an average power of 0.5 W with pulse durations of around 5 ps. Performance issues associated with two-signal amplification in Yb-doped fibers are discussed, as well as perspectives for increasing the wavelength separation of the seed lasers. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2008.2009950 |