Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems

We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2009-12, Vol.27 (24), p.5783-5789
Hauptverfasser: Panicker, Rahul Alex, Lau, Alan Pak Tao, Wilde, Jeffrey P., Kahn, Joseph M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5789
container_issue 24
container_start_page 5783
container_title Journal of lightwave technology
container_volume 27
creator Panicker, Rahul Alex
Lau, Alan Pak Tao
Wilde, Jeffrey P.
Kahn, Joseph M.
description We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.
doi_str_mv 10.1109/JLT.2009.2036683
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858733507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332354</ieee_id><sourcerecordid>2303297951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpoa6be6EXUSj0sslIs5KlozH5Ki45NIHeFu161CrsrrbSujT_PjI2OeQyc5jnfRkexj4JOBcC7MX37f25BLBloNYG37CFUMpUUgp8yxawQqzMStbv2YecHwFEXZvVgv26_D9RCgONs-v5Jg6TSyHHkUfP1zs3zeEf8buyuszX_e-YwvxnyDyMXEB13V5k_mPfz2GIO-JXoaXEfz7lmYb8kb3zrs90dtpL9nB1eb-5qbZ317eb9bbqUOFcKbC20zthrRFG71rnodYr752wLWgFhM470FK01msLnuoOPDowmrS0SuOSfTv2Tin-3VOemyHkjvrejRT3uRGAAqVCawr65RX6GPdpLN81RpkiSBVLSwZHqEsx50S-mYoel55KU3Mw3RTTzcF0czJdIl9PvS53rvfJjV3ILzkp5YGThft85AIRvZwVokRV4zODXoUH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858733507</pqid></control><display><type>article</type><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</creator><creatorcontrib>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</creatorcontrib><description>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2009.2036683</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive optics ; algorithms ; Applied sciences ; Ascent ; Bandwidth ; Circuit properties ; Computer simulation ; Connectors ; Dispersions ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fibers ; Information, signal and communications theory ; Integrated optics. Optical fibers and wave guides ; Intersymbol interference ; Multiplexing ; Offsets ; Optical and optoelectronic circuits ; Optical fiber communications ; Optical fiber dispersion ; Optical fiber polarization ; Optical fibers ; Optical modulation ; Optical noise ; Optical propagation ; Optical telecommunications ; Phased arrays ; Signal and communications theory ; spatial light modulators ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>Journal of lightwave technology, 2009-12, Vol.27 (24), p.5783-5789</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</citedby><cites>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5332354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5332354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22236682$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Panicker, Rahul Alex</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><creatorcontrib>Wilde, Jeffrey P.</creatorcontrib><creatorcontrib>Kahn, Joseph M.</creatorcontrib><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</description><subject>Adaptive algorithm</subject><subject>Adaptive optics</subject><subject>algorithms</subject><subject>Applied sciences</subject><subject>Ascent</subject><subject>Bandwidth</subject><subject>Circuit properties</subject><subject>Computer simulation</subject><subject>Connectors</subject><subject>Dispersions</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Information, signal and communications theory</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Intersymbol interference</subject><subject>Multiplexing</subject><subject>Offsets</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical fiber communications</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber polarization</subject><subject>Optical fibers</subject><subject>Optical modulation</subject><subject>Optical noise</subject><subject>Optical propagation</subject><subject>Optical telecommunications</subject><subject>Phased arrays</subject><subject>Signal and communications theory</subject><subject>spatial light modulators</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEQhkVpoa6be6EXUSj0sslIs5KlozH5Ki45NIHeFu161CrsrrbSujT_PjI2OeQyc5jnfRkexj4JOBcC7MX37f25BLBloNYG37CFUMpUUgp8yxawQqzMStbv2YecHwFEXZvVgv26_D9RCgONs-v5Jg6TSyHHkUfP1zs3zeEf8buyuszX_e-YwvxnyDyMXEB13V5k_mPfz2GIO-JXoaXEfz7lmYb8kb3zrs90dtpL9nB1eb-5qbZ317eb9bbqUOFcKbC20zthrRFG71rnodYr752wLWgFhM470FK01msLnuoOPDowmrS0SuOSfTv2Tin-3VOemyHkjvrejRT3uRGAAqVCawr65RX6GPdpLN81RpkiSBVLSwZHqEsx50S-mYoel55KU3Mw3RTTzcF0czJdIl9PvS53rvfJjV3ILzkp5YGThft85AIRvZwVokRV4zODXoUH</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Panicker, Rahul Alex</creator><creator>Lau, Alan Pak Tao</creator><creator>Wilde, Jeffrey P.</creator><creator>Kahn, Joseph M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><author>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive optics</topic><topic>algorithms</topic><topic>Applied sciences</topic><topic>Ascent</topic><topic>Bandwidth</topic><topic>Circuit properties</topic><topic>Computer simulation</topic><topic>Connectors</topic><topic>Dispersions</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Information, signal and communications theory</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Intersymbol interference</topic><topic>Multiplexing</topic><topic>Offsets</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical fiber communications</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber polarization</topic><topic>Optical fibers</topic><topic>Optical modulation</topic><topic>Optical noise</topic><topic>Optical propagation</topic><topic>Optical telecommunications</topic><topic>Phased arrays</topic><topic>Signal and communications theory</topic><topic>spatial light modulators</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panicker, Rahul Alex</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><creatorcontrib>Wilde, Jeffrey P.</creatorcontrib><creatorcontrib>Kahn, Joseph M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panicker, Rahul Alex</au><au>Lau, Alan Pak Tao</au><au>Wilde, Jeffrey P.</au><au>Kahn, Joseph M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2009-12-15</date><risdate>2009</risdate><volume>27</volume><issue>24</issue><spage>5783</spage><epage>5789</epage><pages>5783-5789</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2009.2036683</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2009-12, Vol.27 (24), p.5783-5789
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_858733507
source IEEE Electronic Library (IEL)
subjects Adaptive algorithm
Adaptive optics
algorithms
Applied sciences
Ascent
Bandwidth
Circuit properties
Computer simulation
Connectors
Dispersions
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Fibers
Information, signal and communications theory
Integrated optics. Optical fibers and wave guides
Intersymbol interference
Multiplexing
Offsets
Optical and optoelectronic circuits
Optical fiber communications
Optical fiber dispersion
Optical fiber polarization
Optical fibers
Optical modulation
Optical noise
Optical propagation
Optical telecommunications
Phased arrays
Signal and communications theory
spatial light modulators
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Comparison%20of%20Adaptive%20Optics%20Algorithms%20in%2010-Gb/s%20Multimode%20Fiber%20Systems&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Panicker,%20Rahul%20Alex&rft.date=2009-12-15&rft.volume=27&rft.issue=24&rft.spage=5783&rft.epage=5789&rft.pages=5783-5789&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2009.2036683&rft_dat=%3Cproquest_RIE%3E2303297951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858733507&rft_id=info:pmid/&rft_ieee_id=5332354&rfr_iscdi=true