Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems
We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase seq...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2009-12, Vol.27 (24), p.5783-5789 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5789 |
---|---|
container_issue | 24 |
container_start_page | 5783 |
container_title | Journal of lightwave technology |
container_volume | 27 |
creator | Panicker, Rahul Alex Lau, Alan Pak Tao Wilde, Jeffrey P. Kahn, Joseph M. |
description | We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions. |
doi_str_mv | 10.1109/JLT.2009.2036683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858733507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332354</ieee_id><sourcerecordid>2303297951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpoa6be6EXUSj0sslIs5KlozH5Ki45NIHeFu161CrsrrbSujT_PjI2OeQyc5jnfRkexj4JOBcC7MX37f25BLBloNYG37CFUMpUUgp8yxawQqzMStbv2YecHwFEXZvVgv26_D9RCgONs-v5Jg6TSyHHkUfP1zs3zeEf8buyuszX_e-YwvxnyDyMXEB13V5k_mPfz2GIO-JXoaXEfz7lmYb8kb3zrs90dtpL9nB1eb-5qbZ317eb9bbqUOFcKbC20zthrRFG71rnodYr752wLWgFhM470FK01msLnuoOPDowmrS0SuOSfTv2Tin-3VOemyHkjvrejRT3uRGAAqVCawr65RX6GPdpLN81RpkiSBVLSwZHqEsx50S-mYoel55KU3Mw3RTTzcF0czJdIl9PvS53rvfJjV3ILzkp5YGThft85AIRvZwVokRV4zODXoUH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858733507</pqid></control><display><type>article</type><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</creator><creatorcontrib>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</creatorcontrib><description>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2009.2036683</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive optics ; algorithms ; Applied sciences ; Ascent ; Bandwidth ; Circuit properties ; Computer simulation ; Connectors ; Dispersions ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fibers ; Information, signal and communications theory ; Integrated optics. Optical fibers and wave guides ; Intersymbol interference ; Multiplexing ; Offsets ; Optical and optoelectronic circuits ; Optical fiber communications ; Optical fiber dispersion ; Optical fiber polarization ; Optical fibers ; Optical modulation ; Optical noise ; Optical propagation ; Optical telecommunications ; Phased arrays ; Signal and communications theory ; spatial light modulators ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>Journal of lightwave technology, 2009-12, Vol.27 (24), p.5783-5789</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</citedby><cites>FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5332354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5332354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22236682$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Panicker, Rahul Alex</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><creatorcontrib>Wilde, Jeffrey P.</creatorcontrib><creatorcontrib>Kahn, Joseph M.</creatorcontrib><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</description><subject>Adaptive algorithm</subject><subject>Adaptive optics</subject><subject>algorithms</subject><subject>Applied sciences</subject><subject>Ascent</subject><subject>Bandwidth</subject><subject>Circuit properties</subject><subject>Computer simulation</subject><subject>Connectors</subject><subject>Dispersions</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Information, signal and communications theory</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Intersymbol interference</subject><subject>Multiplexing</subject><subject>Offsets</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical fiber communications</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber polarization</subject><subject>Optical fibers</subject><subject>Optical modulation</subject><subject>Optical noise</subject><subject>Optical propagation</subject><subject>Optical telecommunications</subject><subject>Phased arrays</subject><subject>Signal and communications theory</subject><subject>spatial light modulators</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEQhkVpoa6be6EXUSj0sslIs5KlozH5Ki45NIHeFu161CrsrrbSujT_PjI2OeQyc5jnfRkexj4JOBcC7MX37f25BLBloNYG37CFUMpUUgp8yxawQqzMStbv2YecHwFEXZvVgv26_D9RCgONs-v5Jg6TSyHHkUfP1zs3zeEf8buyuszX_e-YwvxnyDyMXEB13V5k_mPfz2GIO-JXoaXEfz7lmYb8kb3zrs90dtpL9nB1eb-5qbZ317eb9bbqUOFcKbC20zthrRFG71rnodYr752wLWgFhM470FK01msLnuoOPDowmrS0SuOSfTv2Tin-3VOemyHkjvrejRT3uRGAAqVCawr65RX6GPdpLN81RpkiSBVLSwZHqEsx50S-mYoel55KU3Mw3RTTzcF0czJdIl9PvS53rvfJjV3ILzkp5YGThft85AIRvZwVokRV4zODXoUH</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Panicker, Rahul Alex</creator><creator>Lau, Alan Pak Tao</creator><creator>Wilde, Jeffrey P.</creator><creator>Kahn, Joseph M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</title><author>Panicker, Rahul Alex ; Lau, Alan Pak Tao ; Wilde, Jeffrey P. ; Kahn, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5099c6d1998186dbaf0467ffa19b0650e3afa0621b9f690fe4c0f3a086e629563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive optics</topic><topic>algorithms</topic><topic>Applied sciences</topic><topic>Ascent</topic><topic>Bandwidth</topic><topic>Circuit properties</topic><topic>Computer simulation</topic><topic>Connectors</topic><topic>Dispersions</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Information, signal and communications theory</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Intersymbol interference</topic><topic>Multiplexing</topic><topic>Offsets</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical fiber communications</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber polarization</topic><topic>Optical fibers</topic><topic>Optical modulation</topic><topic>Optical noise</topic><topic>Optical propagation</topic><topic>Optical telecommunications</topic><topic>Phased arrays</topic><topic>Signal and communications theory</topic><topic>spatial light modulators</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panicker, Rahul Alex</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><creatorcontrib>Wilde, Jeffrey P.</creatorcontrib><creatorcontrib>Kahn, Joseph M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panicker, Rahul Alex</au><au>Lau, Alan Pak Tao</au><au>Wilde, Jeffrey P.</au><au>Kahn, Joseph M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2009-12-15</date><risdate>2009</risdate><volume>27</volume><issue>24</issue><spage>5783</spage><epage>5789</epage><pages>5783-5789</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We experimentally compare various adaptive algorithms that use a spatial light modulator (SLM) to compensate modal dispersion in 50- \mu m graded-index multimode fibers. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations in . We then evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate the modal dispersion in up to 9 wavelength-division-multiplexed 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion in fibers up to 2.2 km long, even in the presence of midspan connector offsets up to 4 \mu m (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2009.2036683</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2009-12, Vol.27 (24), p.5783-5789 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_858733507 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithm Adaptive optics algorithms Applied sciences Ascent Bandwidth Circuit properties Computer simulation Connectors Dispersions Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Fibers Information, signal and communications theory Integrated optics. Optical fibers and wave guides Intersymbol interference Multiplexing Offsets Optical and optoelectronic circuits Optical fiber communications Optical fiber dispersion Optical fiber polarization Optical fibers Optical modulation Optical noise Optical propagation Optical telecommunications Phased arrays Signal and communications theory spatial light modulators Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) |
title | Experimental Comparison of Adaptive Optics Algorithms in 10-Gb/s Multimode Fiber Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Comparison%20of%20Adaptive%20Optics%20Algorithms%20in%2010-Gb/s%20Multimode%20Fiber%20Systems&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Panicker,%20Rahul%20Alex&rft.date=2009-12-15&rft.volume=27&rft.issue=24&rft.spage=5783&rft.epage=5789&rft.pages=5783-5789&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2009.2036683&rft_dat=%3Cproquest_RIE%3E2303297951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858733507&rft_id=info:pmid/&rft_ieee_id=5332354&rfr_iscdi=true |