An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models

In this paper, we consider the widely popular structure-preserving models used to describe the dynamic behavior of multimachine power systems. These models consist of differential-algebraic equations, where the algebraic constraints stem from the power flow balance between generators, loads, and lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2009-05, Vol.24 (2), p.759-765
Hauptverfasser: Dib, W., Barabanov, A.E., Ortega, R., Lamnabhi-Lagarrigue, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 2
container_start_page 759
container_title IEEE transactions on power systems
container_volume 24
creator Dib, W.
Barabanov, A.E.
Ortega, R.
Lamnabhi-Lagarrigue, F.
description In this paper, we consider the widely popular structure-preserving models used to describe the dynamic behavior of multimachine power systems. These models consist of differential-algebraic equations, where the algebraic constraints stem from the power flow balance between generators, loads, and lines. Our main contribution is the explicit computation of a solution for these algebraic equations under the assumption that the loads are constant impedances. This result is of interest for transient stabilization problems where, to estimate the domain of attraction of a given control law, it is sometimes necessary to explicitly solve the algebraic constraints. Besides this application, we believe this result may be of interest in other problems of power systems analysis.
doi_str_mv 10.1109/TPWRS.2008.2012191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858697319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4773153</ieee_id><sourcerecordid>2302932291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-cd575b4fbc0dfbef7b6a5cf2e8e270038f164404506c3680f7cd35df8fef07473</originalsourceid><addsrcrecordid>eNp9kU1P20AQhlcVSE2hf4BerB6KOJjOej99DCg0lYJADRXHlbOeLUaON-zafPz7rpsohx64zEjzPu9oRi8hJxTOKYXy-93t_a_leQGgU6EFLekHMqFC6BykKg_IBLQWuS4FfCSfYnwEAJmECTHTLpu9btrGNn229O3QN77LvMv6B8xu_QuG7KJqq85iNnsaqlGNo7zsw2D7ISQoYMTw3HR_dvzyLfa4zq59jW08JoeuaiN-3vUj8vtqdnc5zxc3P35eThe5ZSXtc1sLJVbcrSzUboVOrWQlrCtQY6EAmHZUcg5cgLRManDK1kzUTjt0oLhiR-Rsu_ehas0mNOsqvBlfNWY-XZhxBsC5ZFI808SebtlN8E8Dxt6sm2ixTW-iH6LRSgBVpeSJ_PYuybig6SadwK__gY9-CF362GihZakYLRNUbCEbfIwB3f5QCmaM0fyL0Ywxml2MyfRla2oQcW_gKm0UjP0FdFWYoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858697319</pqid></control><display><type>article</type><title>An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models</title><source>IEEE Electronic Library (IEL)</source><creator>Dib, W. ; Barabanov, A.E. ; Ortega, R. ; Lamnabhi-Lagarrigue, F.</creator><creatorcontrib>Dib, W. ; Barabanov, A.E. ; Ortega, R. ; Lamnabhi-Lagarrigue, F.</creatorcontrib><description>In this paper, we consider the widely popular structure-preserving models used to describe the dynamic behavior of multimachine power systems. These models consist of differential-algebraic equations, where the algebraic constraints stem from the power flow balance between generators, loads, and lines. Our main contribution is the explicit computation of a solution for these algebraic equations under the assumption that the loads are constant impedances. This result is of interest for transient stabilization problems where, to estimate the domain of attraction of a given control law, it is sometimes necessary to explicitly solve the algebraic constraints. Besides this application, we believe this result may be of interest in other problems of power systems analysis.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2008.2012191</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Attraction ; Automatic ; Differential algebraic equations ; Dynamical systems ; Dynamics ; Engineering Sciences ; Impedance ; Integrated circuit interconnections ; Law ; Mathematical analysis ; Mathematical models ; Network topology ; Power system analysis computing ; Power system dynamics ; Power system interconnection ; Power system modeling ; Power system stability ; Power system transients ; power systems ; Stabilization ; structure preserving model</subject><ispartof>IEEE transactions on power systems, 2009-05, Vol.24 (2), p.759-765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-cd575b4fbc0dfbef7b6a5cf2e8e270038f164404506c3680f7cd35df8fef07473</citedby><cites>FETCH-LOGICAL-c391t-cd575b4fbc0dfbef7b6a5cf2e8e270038f164404506c3680f7cd35df8fef07473</cites><orcidid>0000-0003-2512-3587 ; 0000-0002-7747-5405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4773153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4773153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00446365$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dib, W.</creatorcontrib><creatorcontrib>Barabanov, A.E.</creatorcontrib><creatorcontrib>Ortega, R.</creatorcontrib><creatorcontrib>Lamnabhi-Lagarrigue, F.</creatorcontrib><title>An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this paper, we consider the widely popular structure-preserving models used to describe the dynamic behavior of multimachine power systems. These models consist of differential-algebraic equations, where the algebraic constraints stem from the power flow balance between generators, loads, and lines. Our main contribution is the explicit computation of a solution for these algebraic equations under the assumption that the loads are constant impedances. This result is of interest for transient stabilization problems where, to estimate the domain of attraction of a given control law, it is sometimes necessary to explicitly solve the algebraic constraints. Besides this application, we believe this result may be of interest in other problems of power systems analysis.</description><subject>Algebra</subject><subject>Attraction</subject><subject>Automatic</subject><subject>Differential algebraic equations</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Engineering Sciences</subject><subject>Impedance</subject><subject>Integrated circuit interconnections</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Network topology</subject><subject>Power system analysis computing</subject><subject>Power system dynamics</subject><subject>Power system interconnection</subject><subject>Power system modeling</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>power systems</subject><subject>Stabilization</subject><subject>structure preserving model</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1P20AQhlcVSE2hf4BerB6KOJjOej99DCg0lYJADRXHlbOeLUaON-zafPz7rpsohx64zEjzPu9oRi8hJxTOKYXy-93t_a_leQGgU6EFLekHMqFC6BykKg_IBLQWuS4FfCSfYnwEAJmECTHTLpu9btrGNn229O3QN77LvMv6B8xu_QuG7KJqq85iNnsaqlGNo7zsw2D7ISQoYMTw3HR_dvzyLfa4zq59jW08JoeuaiN-3vUj8vtqdnc5zxc3P35eThe5ZSXtc1sLJVbcrSzUboVOrWQlrCtQY6EAmHZUcg5cgLRManDK1kzUTjt0oLhiR-Rsu_ehas0mNOsqvBlfNWY-XZhxBsC5ZFI808SebtlN8E8Dxt6sm2ixTW-iH6LRSgBVpeSJ_PYuybig6SadwK__gY9-CF362GihZakYLRNUbCEbfIwB3f5QCmaM0fyL0Ywxml2MyfRla2oQcW_gKm0UjP0FdFWYoA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Dib, W.</creator><creator>Barabanov, A.E.</creator><creator>Ortega, R.</creator><creator>Lamnabhi-Lagarrigue, F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2512-3587</orcidid><orcidid>https://orcid.org/0000-0002-7747-5405</orcidid></search><sort><creationdate>20090501</creationdate><title>An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models</title><author>Dib, W. ; Barabanov, A.E. ; Ortega, R. ; Lamnabhi-Lagarrigue, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-cd575b4fbc0dfbef7b6a5cf2e8e270038f164404506c3680f7cd35df8fef07473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Attraction</topic><topic>Automatic</topic><topic>Differential algebraic equations</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Engineering Sciences</topic><topic>Impedance</topic><topic>Integrated circuit interconnections</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Network topology</topic><topic>Power system analysis computing</topic><topic>Power system dynamics</topic><topic>Power system interconnection</topic><topic>Power system modeling</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>power systems</topic><topic>Stabilization</topic><topic>structure preserving model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dib, W.</creatorcontrib><creatorcontrib>Barabanov, A.E.</creatorcontrib><creatorcontrib>Ortega, R.</creatorcontrib><creatorcontrib>Lamnabhi-Lagarrigue, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dib, W.</au><au>Barabanov, A.E.</au><au>Ortega, R.</au><au>Lamnabhi-Lagarrigue, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>24</volume><issue>2</issue><spage>759</spage><epage>765</epage><pages>759-765</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this paper, we consider the widely popular structure-preserving models used to describe the dynamic behavior of multimachine power systems. These models consist of differential-algebraic equations, where the algebraic constraints stem from the power flow balance between generators, loads, and lines. Our main contribution is the explicit computation of a solution for these algebraic equations under the assumption that the loads are constant impedances. This result is of interest for transient stabilization problems where, to estimate the domain of attraction of a given control law, it is sometimes necessary to explicitly solve the algebraic constraints. Besides this application, we believe this result may be of interest in other problems of power systems analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2008.2012191</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2512-3587</orcidid><orcidid>https://orcid.org/0000-0002-7747-5405</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2009-05, Vol.24 (2), p.759-765
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_858697319
source IEEE Electronic Library (IEL)
subjects Algebra
Attraction
Automatic
Differential algebraic equations
Dynamical systems
Dynamics
Engineering Sciences
Impedance
Integrated circuit interconnections
Law
Mathematical analysis
Mathematical models
Network topology
Power system analysis computing
Power system dynamics
Power system interconnection
Power system modeling
Power system stability
Power system transients
power systems
Stabilization
structure preserving model
title An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Solution%20of%20the%20Power%20Balance%20Equations%20of%20Structure%20Preserving%20Power%20System%20Models&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Dib,%20W.&rft.date=2009-05-01&rft.volume=24&rft.issue=2&rft.spage=759&rft.epage=765&rft.pages=759-765&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2008.2012191&rft_dat=%3Cproquest_RIE%3E2302932291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858697319&rft_id=info:pmid/&rft_ieee_id=4773153&rfr_iscdi=true