Strategic Generation Capacity Expansion Planning With Incomplete Information

To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2009-05, Vol.24 (2), p.1002-1010
Hauptverfasser: Jianhui Wang, Shahidehpour, M., Zuyi Li, Botterud, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1010
container_issue 2
container_start_page 1002
container_title IEEE transactions on power systems
container_volume 24
creator Jianhui Wang
Shahidehpour, M.
Zuyi Li
Botterud, A.
description To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation.
doi_str_mv 10.1109/TPWRS.2009.2017435
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858697227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4814477</ieee_id><sourcerecordid>34532141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-683cddbe417763abed21a4748bf1f6794a63cdcdf7d3e5a0d3150bea648e87953</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEmPwB-BScYBTR9IkTXpE0xiTJjGxoR2jtHVHpn6RdBL796TbxIEDF9uyn9ey9SJ0S_CIEJw8rRbr9-UowjjxgQhG-RkaEM5liGORnKMBlpKHMuH4El05t8UYx34wQPNlZ3UHG5MFU6jB16apg7FudWa6fTD5bnXt-tai1HVt6k2wNt1nMKuzpmpL6MCXRWOrg-4aXRS6dHBzykP08TJZjV_D-dt0Nn6ehxnlogtjSbM8T4ERIWKqU8gjoplgMi1I4a9iOvZAlhcip8A1zinhOAUdMwlSJJwO0eNxb2ubrx24TlXGZVD6E6HZOSUFxxSTiHjy4V-SMk4jwnrw_g-4bXa29l8oyWWciCgSHoqOUGYb5ywUqrWm0navCFa9D-rgg-p9UCcfvOjuKDIA8CtgkjAmBP0BdcOEmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858697227</pqid></control><display><type>article</type><title>Strategic Generation Capacity Expansion Planning With Incomplete Information</title><source>IEEE Electronic Library (IEL)</source><creator>Jianhui Wang ; Shahidehpour, M. ; Zuyi Li ; Botterud, A.</creator><creatorcontrib>Jianhui Wang ; Shahidehpour, M. ; Zuyi Li ; Botterud, A.</creatorcontrib><description>To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2009.2017435</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>agent modeling ; Algorithms ; Behavior ; Capacity planning ; Costs ; Decisions ; Economic models ; Electricity supply industry ; Energy measurement ; Games ; generation expansion ; market design ; market power ; Markets ; Nash equilibrium ; noncooperative game ; Optimization ; physical withholding ; Power generation ; Power system modeling ; power system planning ; Procurement ; Reserves ; Searching ; Strategic planning ; Strategy ; Studies ; Transmission line matrix methods</subject><ispartof>IEEE transactions on power systems, 2009-05, Vol.24 (2), p.1002-1010</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-683cddbe417763abed21a4748bf1f6794a63cdcdf7d3e5a0d3150bea648e87953</citedby><cites>FETCH-LOGICAL-c357t-683cddbe417763abed21a4748bf1f6794a63cdcdf7d3e5a0d3150bea648e87953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4814477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4814477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianhui Wang</creatorcontrib><creatorcontrib>Shahidehpour, M.</creatorcontrib><creatorcontrib>Zuyi Li</creatorcontrib><creatorcontrib>Botterud, A.</creatorcontrib><title>Strategic Generation Capacity Expansion Planning With Incomplete Information</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation.</description><subject>agent modeling</subject><subject>Algorithms</subject><subject>Behavior</subject><subject>Capacity planning</subject><subject>Costs</subject><subject>Decisions</subject><subject>Economic models</subject><subject>Electricity supply industry</subject><subject>Energy measurement</subject><subject>Games</subject><subject>generation expansion</subject><subject>market design</subject><subject>market power</subject><subject>Markets</subject><subject>Nash equilibrium</subject><subject>noncooperative game</subject><subject>Optimization</subject><subject>physical withholding</subject><subject>Power generation</subject><subject>Power system modeling</subject><subject>power system planning</subject><subject>Procurement</subject><subject>Reserves</subject><subject>Searching</subject><subject>Strategic planning</subject><subject>Strategy</subject><subject>Studies</subject><subject>Transmission line matrix methods</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1PwzAMhiMEEmPwB-BScYBTR9IkTXpE0xiTJjGxoR2jtHVHpn6RdBL796TbxIEDF9uyn9ey9SJ0S_CIEJw8rRbr9-UowjjxgQhG-RkaEM5liGORnKMBlpKHMuH4El05t8UYx34wQPNlZ3UHG5MFU6jB16apg7FudWa6fTD5bnXt-tai1HVt6k2wNt1nMKuzpmpL6MCXRWOrg-4aXRS6dHBzykP08TJZjV_D-dt0Nn6ehxnlogtjSbM8T4ERIWKqU8gjoplgMi1I4a9iOvZAlhcip8A1zinhOAUdMwlSJJwO0eNxb2ubrx24TlXGZVD6E6HZOSUFxxSTiHjy4V-SMk4jwnrw_g-4bXa29l8oyWWciCgSHoqOUGYb5ywUqrWm0navCFa9D-rgg-p9UCcfvOjuKDIA8CtgkjAmBP0BdcOEmg</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Jianhui Wang</creator><creator>Shahidehpour, M.</creator><creator>Zuyi Li</creator><creator>Botterud, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20090501</creationdate><title>Strategic Generation Capacity Expansion Planning With Incomplete Information</title><author>Jianhui Wang ; Shahidehpour, M. ; Zuyi Li ; Botterud, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-683cddbe417763abed21a4748bf1f6794a63cdcdf7d3e5a0d3150bea648e87953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>agent modeling</topic><topic>Algorithms</topic><topic>Behavior</topic><topic>Capacity planning</topic><topic>Costs</topic><topic>Decisions</topic><topic>Economic models</topic><topic>Electricity supply industry</topic><topic>Energy measurement</topic><topic>Games</topic><topic>generation expansion</topic><topic>market design</topic><topic>market power</topic><topic>Markets</topic><topic>Nash equilibrium</topic><topic>noncooperative game</topic><topic>Optimization</topic><topic>physical withholding</topic><topic>Power generation</topic><topic>Power system modeling</topic><topic>power system planning</topic><topic>Procurement</topic><topic>Reserves</topic><topic>Searching</topic><topic>Strategic planning</topic><topic>Strategy</topic><topic>Studies</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianhui Wang</creatorcontrib><creatorcontrib>Shahidehpour, M.</creatorcontrib><creatorcontrib>Zuyi Li</creatorcontrib><creatorcontrib>Botterud, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianhui Wang</au><au>Shahidehpour, M.</au><au>Zuyi Li</au><au>Botterud, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic Generation Capacity Expansion Planning With Incomplete Information</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>24</volume><issue>2</issue><spage>1002</spage><epage>1010</epage><pages>1002-1010</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2009.2017435</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2009-05, Vol.24 (2), p.1002-1010
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_858697227
source IEEE Electronic Library (IEL)
subjects agent modeling
Algorithms
Behavior
Capacity planning
Costs
Decisions
Economic models
Electricity supply industry
Energy measurement
Games
generation expansion
market design
market power
Markets
Nash equilibrium
noncooperative game
Optimization
physical withholding
Power generation
Power system modeling
power system planning
Procurement
Reserves
Searching
Strategic planning
Strategy
Studies
Transmission line matrix methods
title Strategic Generation Capacity Expansion Planning With Incomplete Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20Generation%20Capacity%20Expansion%20Planning%20With%20Incomplete%20Information&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Jianhui%20Wang&rft.date=2009-05-01&rft.volume=24&rft.issue=2&rft.spage=1002&rft.epage=1010&rft.pages=1002-1010&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2009.2017435&rft_dat=%3Cproquest_RIE%3E34532141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858697227&rft_id=info:pmid/&rft_ieee_id=4814477&rfr_iscdi=true