Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos

In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2009-08, Vol.11 (5), p.906-917
Hauptverfasser: Jinchang Ren, Jinchang Ren, Jianmin Jiang, Jianmin Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 917
container_issue 5
container_start_page 906
container_title IEEE transactions on multimedia
container_volume 11
creator Jinchang Ren, Jinchang Ren
Jianmin Jiang, Jianmin Jiang
description In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.
doi_str_mv 10.1109/TMM.2009.2021782
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858440520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4907069</ieee_id><sourcerecordid>875028302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</originalsourceid><addsrcrecordid>eNpdkN9rFDEQxxdRsFbfBV-CID5tnfzc5LEc1RZ6CPUU38LcZtam7G3OZFfQv7457uiDL5mQ-cyXyadp3nK44Bzcp816fSEAXD0E76x41pxxp3gL0HXP610LaJ3g8LJ5VcoDAFcaurPm53WkjLm_jz2ObJ0CjXH6xXAK7DLgfo5_iK3GpcyUD-9DyuyOcGw3cUfs27LbYY7_cI5pYmlgd0u5Zz9ioFReNy8GHAu9OdXz5vvnq83qur39-uVmdXnb9tKpubUCgwxoHRq1lVtpjFGWWzToeEdOKWFVrwfNaSs0mRAcUhBGyF6B7rZanjcfj7n7nH4vVGa_i6WnccSJ0lK87TQIK0FU8v1_5ENa8lSX81ZbVfMEVAiOUJ9TKZkGv8-xfvKv5-APon0V7Q-i_Ul0HflwysVSJQ4Zpz6WpznBrTJGHjZ9d-QiET21lYMOjJOPcuuFNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858440520</pqid></control><display><type>article</type><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</creator><creatorcontrib>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</creatorcontrib><description>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2009.2021782</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activity level ; adaptive clustering ; Applied sciences ; Artificial intelligence ; Clustering ; Clustering algorithms ; Clusters ; Compressed ; Computer science; control theory; systems ; Content based retrieval ; Data mining ; Data processing. List processing. Character string processing ; Descriptions ; Exact sciences and technology ; Formal languages ; Gunshot detection systems ; hierarchical modelling ; Information retrieval ; Mathematical models ; Memory organisation. Data processing ; Multimedia ; Object detection ; Pattern recognition. Digital image processing. Computational geometry ; Semantics ; Shot ; Software ; Speech analysis ; Studies ; TRECVID ; video rushes summarization ; Videos</subject><ispartof>IEEE transactions on multimedia, 2009-08, Vol.11 (5), p.906-917</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</citedby><cites>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4907069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4907069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21846635$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jinchang Ren, Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang, Jianmin Jiang</creatorcontrib><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</description><subject>Activity level</subject><subject>adaptive clustering</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Compressed</subject><subject>Computer science; control theory; systems</subject><subject>Content based retrieval</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Descriptions</subject><subject>Exact sciences and technology</subject><subject>Formal languages</subject><subject>Gunshot detection systems</subject><subject>hierarchical modelling</subject><subject>Information retrieval</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Multimedia</subject><subject>Object detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Semantics</subject><subject>Shot</subject><subject>Software</subject><subject>Speech analysis</subject><subject>Studies</subject><subject>TRECVID</subject><subject>video rushes summarization</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9rFDEQxxdRsFbfBV-CID5tnfzc5LEc1RZ6CPUU38LcZtam7G3OZFfQv7457uiDL5mQ-cyXyadp3nK44Bzcp816fSEAXD0E76x41pxxp3gL0HXP610LaJ3g8LJ5VcoDAFcaurPm53WkjLm_jz2ObJ0CjXH6xXAK7DLgfo5_iK3GpcyUD-9DyuyOcGw3cUfs27LbYY7_cI5pYmlgd0u5Zz9ioFReNy8GHAu9OdXz5vvnq83qur39-uVmdXnb9tKpubUCgwxoHRq1lVtpjFGWWzToeEdOKWFVrwfNaSs0mRAcUhBGyF6B7rZanjcfj7n7nH4vVGa_i6WnccSJ0lK87TQIK0FU8v1_5ENa8lSX81ZbVfMEVAiOUJ9TKZkGv8-xfvKv5-APon0V7Q-i_Ul0HflwysVSJQ4Zpz6WpznBrTJGHjZ9d-QiET21lYMOjJOPcuuFNg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Jinchang Ren, Jinchang Ren</creator><creator>Jianmin Jiang, Jianmin Jiang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090801</creationdate><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><author>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Activity level</topic><topic>adaptive clustering</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Compressed</topic><topic>Computer science; control theory; systems</topic><topic>Content based retrieval</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Descriptions</topic><topic>Exact sciences and technology</topic><topic>Formal languages</topic><topic>Gunshot detection systems</topic><topic>hierarchical modelling</topic><topic>Information retrieval</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Multimedia</topic><topic>Object detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Semantics</topic><topic>Shot</topic><topic>Software</topic><topic>Speech analysis</topic><topic>Studies</topic><topic>TRECVID</topic><topic>video rushes summarization</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinchang Ren, Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang, Jianmin Jiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinchang Ren, Jinchang Ren</au><au>Jianmin Jiang, Jianmin Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>11</volume><issue>5</issue><spage>906</spage><epage>917</epage><pages>906-917</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2009.2021782</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2009-08, Vol.11 (5), p.906-917
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_858440520
source IEEE Electronic Library (IEL)
subjects Activity level
adaptive clustering
Applied sciences
Artificial intelligence
Clustering
Clustering algorithms
Clusters
Compressed
Computer science
control theory
systems
Content based retrieval
Data mining
Data processing. List processing. Character string processing
Descriptions
Exact sciences and technology
Formal languages
Gunshot detection systems
hierarchical modelling
Information retrieval
Mathematical models
Memory organisation. Data processing
Multimedia
Object detection
Pattern recognition. Digital image processing. Computational geometry
Semantics
Shot
Software
Speech analysis
Studies
TRECVID
video rushes summarization
Videos
title Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Modeling%20and%20Adaptive%20Clustering%20for%20Real-Time%20Summarization%20of%20Rush%20Videos&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Jinchang%20Ren,%20Jinchang%20Ren&rft.date=2009-08-01&rft.volume=11&rft.issue=5&rft.spage=906&rft.epage=917&rft.pages=906-917&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2009.2021782&rft_dat=%3Cproquest_RIE%3E875028302%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858440520&rft_id=info:pmid/&rft_ieee_id=4907069&rfr_iscdi=true