Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos
In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2009-08, Vol.11 (5), p.906-917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 917 |
---|---|
container_issue | 5 |
container_start_page | 906 |
container_title | IEEE transactions on multimedia |
container_volume | 11 |
creator | Jinchang Ren, Jinchang Ren Jianmin Jiang, Jianmin Jiang |
description | In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic. |
doi_str_mv | 10.1109/TMM.2009.2021782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_858440520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4907069</ieee_id><sourcerecordid>875028302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</originalsourceid><addsrcrecordid>eNpdkN9rFDEQxxdRsFbfBV-CID5tnfzc5LEc1RZ6CPUU38LcZtam7G3OZFfQv7457uiDL5mQ-cyXyadp3nK44Bzcp816fSEAXD0E76x41pxxp3gL0HXP610LaJ3g8LJ5VcoDAFcaurPm53WkjLm_jz2ObJ0CjXH6xXAK7DLgfo5_iK3GpcyUD-9DyuyOcGw3cUfs27LbYY7_cI5pYmlgd0u5Zz9ioFReNy8GHAu9OdXz5vvnq83qur39-uVmdXnb9tKpubUCgwxoHRq1lVtpjFGWWzToeEdOKWFVrwfNaSs0mRAcUhBGyF6B7rZanjcfj7n7nH4vVGa_i6WnccSJ0lK87TQIK0FU8v1_5ENa8lSX81ZbVfMEVAiOUJ9TKZkGv8-xfvKv5-APon0V7Q-i_Ul0HflwysVSJQ4Zpz6WpznBrTJGHjZ9d-QiET21lYMOjJOPcuuFNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858440520</pqid></control><display><type>article</type><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</creator><creatorcontrib>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</creatorcontrib><description>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2009.2021782</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activity level ; adaptive clustering ; Applied sciences ; Artificial intelligence ; Clustering ; Clustering algorithms ; Clusters ; Compressed ; Computer science; control theory; systems ; Content based retrieval ; Data mining ; Data processing. List processing. Character string processing ; Descriptions ; Exact sciences and technology ; Formal languages ; Gunshot detection systems ; hierarchical modelling ; Information retrieval ; Mathematical models ; Memory organisation. Data processing ; Multimedia ; Object detection ; Pattern recognition. Digital image processing. Computational geometry ; Semantics ; Shot ; Software ; Speech analysis ; Studies ; TRECVID ; video rushes summarization ; Videos</subject><ispartof>IEEE transactions on multimedia, 2009-08, Vol.11 (5), p.906-917</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</citedby><cites>FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4907069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4907069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21846635$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jinchang Ren, Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang, Jianmin Jiang</creatorcontrib><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</description><subject>Activity level</subject><subject>adaptive clustering</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Compressed</subject><subject>Computer science; control theory; systems</subject><subject>Content based retrieval</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Descriptions</subject><subject>Exact sciences and technology</subject><subject>Formal languages</subject><subject>Gunshot detection systems</subject><subject>hierarchical modelling</subject><subject>Information retrieval</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Multimedia</subject><subject>Object detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Semantics</subject><subject>Shot</subject><subject>Software</subject><subject>Speech analysis</subject><subject>Studies</subject><subject>TRECVID</subject><subject>video rushes summarization</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9rFDEQxxdRsFbfBV-CID5tnfzc5LEc1RZ6CPUU38LcZtam7G3OZFfQv7457uiDL5mQ-cyXyadp3nK44Bzcp816fSEAXD0E76x41pxxp3gL0HXP610LaJ3g8LJ5VcoDAFcaurPm53WkjLm_jz2ObJ0CjXH6xXAK7DLgfo5_iK3GpcyUD-9DyuyOcGw3cUfs27LbYY7_cI5pYmlgd0u5Zz9ioFReNy8GHAu9OdXz5vvnq83qur39-uVmdXnb9tKpubUCgwxoHRq1lVtpjFGWWzToeEdOKWFVrwfNaSs0mRAcUhBGyF6B7rZanjcfj7n7nH4vVGa_i6WnccSJ0lK87TQIK0FU8v1_5ENa8lSX81ZbVfMEVAiOUJ9TKZkGv8-xfvKv5-APon0V7Q-i_Ul0HflwysVSJQ4Zpz6WpznBrTJGHjZ9d-QiET21lYMOjJOPcuuFNg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Jinchang Ren, Jinchang Ren</creator><creator>Jianmin Jiang, Jianmin Jiang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090801</creationdate><title>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</title><author>Jinchang Ren, Jinchang Ren ; Jianmin Jiang, Jianmin Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-82ad3da89a64b3b36664818a6a917e944284c5f51eb25e6dd9aed2623c4057b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Activity level</topic><topic>adaptive clustering</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Compressed</topic><topic>Computer science; control theory; systems</topic><topic>Content based retrieval</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Descriptions</topic><topic>Exact sciences and technology</topic><topic>Formal languages</topic><topic>Gunshot detection systems</topic><topic>hierarchical modelling</topic><topic>Information retrieval</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Multimedia</topic><topic>Object detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Semantics</topic><topic>Shot</topic><topic>Software</topic><topic>Speech analysis</topic><topic>Studies</topic><topic>TRECVID</topic><topic>video rushes summarization</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinchang Ren, Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang, Jianmin Jiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinchang Ren, Jinchang Ren</au><au>Jianmin Jiang, Jianmin Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>11</volume><issue>5</issue><spage>906</spage><epage>917</epage><pages>906-917</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2009.2021782</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2009-08, Vol.11 (5), p.906-917 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_858440520 |
source | IEEE Electronic Library (IEL) |
subjects | Activity level adaptive clustering Applied sciences Artificial intelligence Clustering Clustering algorithms Clusters Compressed Computer science control theory systems Content based retrieval Data mining Data processing. List processing. Character string processing Descriptions Exact sciences and technology Formal languages Gunshot detection systems hierarchical modelling Information retrieval Mathematical models Memory organisation. Data processing Multimedia Object detection Pattern recognition. Digital image processing. Computational geometry Semantics Shot Software Speech analysis Studies TRECVID video rushes summarization Videos |
title | Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Modeling%20and%20Adaptive%20Clustering%20for%20Real-Time%20Summarization%20of%20Rush%20Videos&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Jinchang%20Ren,%20Jinchang%20Ren&rft.date=2009-08-01&rft.volume=11&rft.issue=5&rft.spage=906&rft.epage=917&rft.pages=906-917&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2009.2021782&rft_dat=%3Cproquest_RIE%3E875028302%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858440520&rft_id=info:pmid/&rft_ieee_id=4907069&rfr_iscdi=true |