Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity

Huntington's disease is characterized by mitochondrial dysfunction and neuron death. Now, Ella Bossy-Wetzel and her colleagues report that the aberrant interaction of mutant huntingtin protein with the mitochondrial fission protein DRP1 results in DRP1 activation. Blocking DRP1 activity can red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2011-03, Vol.17 (3), p.377-382
Hauptverfasser: Song, Wenjun, Chen, Jin, Petrilli, Alejandra, Liot, Geraldine, Klinglmayr, Eva, Zhou, Yue, Poquiz, Patrick, Tjong, Jonathan, Pouladi, Mahmoud A, Hayden, Michael R, Masliah, Eliezer, Ellisman, Mark, Rouiller, Isabelle, Schwarzenbacher, Robert, Bossy, Blaise, Perkins, Guy, Bossy-Wetzel, Ella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 377
container_title Nature medicine
container_volume 17
creator Song, Wenjun
Chen, Jin
Petrilli, Alejandra
Liot, Geraldine
Klinglmayr, Eva
Zhou, Yue
Poquiz, Patrick
Tjong, Jonathan
Pouladi, Mahmoud A
Hayden, Michael R
Masliah, Eliezer
Ellisman, Mark
Rouiller, Isabelle
Schwarzenbacher, Robert
Bossy, Blaise
Perkins, Guy
Bossy-Wetzel, Ella
description Huntington's disease is characterized by mitochondrial dysfunction and neuron death. Now, Ella Bossy-Wetzel and her colleagues report that the aberrant interaction of mutant huntingtin protein with the mitochondrial fission protein DRP1 results in DRP1 activation. Blocking DRP1 activity can reduce mutant huntingtin–induced cell death. Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT ). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis 1 , 2 . Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin–mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.
doi_str_mv 10.1038/nm.2313
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_858125799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A251632053</galeid><sourcerecordid>A251632053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-8e722858568633e9f4ccec7b3eb1e30cf4bd59fecee8e066729729369f6844483</originalsourceid><addsrcrecordid>eNqN0t1v1SAUAPDGaNycxv_AEE38eOiVj5bSx2XRuWRmRqfxjVB62rIUmEA3r3-9LHd-XHMfDCVA-Z1TQk9RPCZ4RTATr51dUUbYnWKf1BUvSYO_3s1z3IhStDXfKx7EeIExZrhu7xd7lDDGqaj2i-v3S1IuoWlxybgxd9QZ10eUJkDWJK8n7_pg1IwGE6PxDh2ff1ARUL92yhpXBphVgh5dBp8grwlSrkfG6QCZRWRSROB-rK1KRiOlk7kyaf2wuDeoOcKj2_Gg-Pz2zfnRu_L07Pjk6PC01LxiqRTQUCpqUXPBGYN2qLQG3XQMOgIM66Hq-rodQAMIwJw3tM0P4-3ARVVVgh0UTzd58_G-LRCTvPBLcPmTMqcltG7aNqNnGzSqGaRxg09BaWuiloe0JpxRXLOsyh1qBAdBzd7BYPLrLb_a4XPrwRq9M-DVVkA2Cb6nUS0xypNPH__fnn3Zts__shOoOU3Rz0vKfzNuwxcbqIOPMcAgL4OxKqwlwfKmzqSz8qbOsnxye61LZ6H_7X4VVgYvNyDmLTdC-HPv_-b6CUk214k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858125799</pqid></control><display><type>article</type><title>Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Wenjun ; Chen, Jin ; Petrilli, Alejandra ; Liot, Geraldine ; Klinglmayr, Eva ; Zhou, Yue ; Poquiz, Patrick ; Tjong, Jonathan ; Pouladi, Mahmoud A ; Hayden, Michael R ; Masliah, Eliezer ; Ellisman, Mark ; Rouiller, Isabelle ; Schwarzenbacher, Robert ; Bossy, Blaise ; Perkins, Guy ; Bossy-Wetzel, Ella</creator><creatorcontrib>Song, Wenjun ; Chen, Jin ; Petrilli, Alejandra ; Liot, Geraldine ; Klinglmayr, Eva ; Zhou, Yue ; Poquiz, Patrick ; Tjong, Jonathan ; Pouladi, Mahmoud A ; Hayden, Michael R ; Masliah, Eliezer ; Ellisman, Mark ; Rouiller, Isabelle ; Schwarzenbacher, Robert ; Bossy, Blaise ; Perkins, Guy ; Bossy-Wetzel, Ella</creatorcontrib><description>Huntington's disease is characterized by mitochondrial dysfunction and neuron death. Now, Ella Bossy-Wetzel and her colleagues report that the aberrant interaction of mutant huntingtin protein with the mitochondrial fission protein DRP1 results in DRP1 activation. Blocking DRP1 activity can reduce mutant huntingtin–induced cell death. Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT ). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis 1 , 2 . Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin–mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.2313</identifier><identifier>PMID: 21336284</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1689/1558 ; 631/378/1934 ; 631/45/612/1240 ; Aggregates ; Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Disease Models, Animal ; Enzymatic activity ; Enzymes ; GTP Phosphohydrolases - metabolism ; Guanosine triphosphatase ; Humans ; Huntingtin Protein ; Huntingtons disease ; Infectious Diseases ; letter ; Metabolic Diseases ; Mice ; Microtubule-Associated Proteins - metabolism ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Molecular Medicine ; Mutants ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons ; Neurosciences ; Neurotoxicity ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Physiological aspects ; Protein Binding ; Proteins</subject><ispartof>Nature medicine, 2011-03, Vol.17 (3), p.377-382</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-8e722858568633e9f4ccec7b3eb1e30cf4bd59fecee8e066729729369f6844483</citedby><cites>FETCH-LOGICAL-c643t-8e722858568633e9f4ccec7b3eb1e30cf4bd59fecee8e066729729369f6844483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.2313$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.2313$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21336284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Wenjun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Petrilli, Alejandra</creatorcontrib><creatorcontrib>Liot, Geraldine</creatorcontrib><creatorcontrib>Klinglmayr, Eva</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Poquiz, Patrick</creatorcontrib><creatorcontrib>Tjong, Jonathan</creatorcontrib><creatorcontrib>Pouladi, Mahmoud A</creatorcontrib><creatorcontrib>Hayden, Michael R</creatorcontrib><creatorcontrib>Masliah, Eliezer</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Schwarzenbacher, Robert</creatorcontrib><creatorcontrib>Bossy, Blaise</creatorcontrib><creatorcontrib>Perkins, Guy</creatorcontrib><creatorcontrib>Bossy-Wetzel, Ella</creatorcontrib><title>Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Huntington's disease is characterized by mitochondrial dysfunction and neuron death. Now, Ella Bossy-Wetzel and her colleagues report that the aberrant interaction of mutant huntingtin protein with the mitochondrial fission protein DRP1 results in DRP1 activation. Blocking DRP1 activity can reduce mutant huntingtin–induced cell death. Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT ). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis 1 , 2 . Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin–mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.</description><subject>631/378/1689/1558</subject><subject>631/378/1934</subject><subject>631/45/612/1240</subject><subject>Aggregates</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Disease Models, Animal</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Guanosine triphosphatase</subject><subject>Humans</subject><subject>Huntingtin Protein</subject><subject>Huntingtons disease</subject><subject>Infectious Diseases</subject><subject>letter</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Medicine</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotoxicity</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Proteins</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0t1v1SAUAPDGaNycxv_AEE38eOiVj5bSx2XRuWRmRqfxjVB62rIUmEA3r3-9LHd-XHMfDCVA-Z1TQk9RPCZ4RTATr51dUUbYnWKf1BUvSYO_3s1z3IhStDXfKx7EeIExZrhu7xd7lDDGqaj2i-v3S1IuoWlxybgxd9QZ10eUJkDWJK8n7_pg1IwGE6PxDh2ff1ARUL92yhpXBphVgh5dBp8grwlSrkfG6QCZRWRSROB-rK1KRiOlk7kyaf2wuDeoOcKj2_Gg-Pz2zfnRu_L07Pjk6PC01LxiqRTQUCpqUXPBGYN2qLQG3XQMOgIM66Hq-rodQAMIwJw3tM0P4-3ARVVVgh0UTzd58_G-LRCTvPBLcPmTMqcltG7aNqNnGzSqGaRxg09BaWuiloe0JpxRXLOsyh1qBAdBzd7BYPLrLb_a4XPrwRq9M-DVVkA2Cb6nUS0xypNPH__fnn3Zts__shOoOU3Rz0vKfzNuwxcbqIOPMcAgL4OxKqwlwfKmzqSz8qbOsnxye61LZ6H_7X4VVgYvNyDmLTdC-HPv_-b6CUk214k</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Song, Wenjun</creator><creator>Chen, Jin</creator><creator>Petrilli, Alejandra</creator><creator>Liot, Geraldine</creator><creator>Klinglmayr, Eva</creator><creator>Zhou, Yue</creator><creator>Poquiz, Patrick</creator><creator>Tjong, Jonathan</creator><creator>Pouladi, Mahmoud A</creator><creator>Hayden, Michael R</creator><creator>Masliah, Eliezer</creator><creator>Ellisman, Mark</creator><creator>Rouiller, Isabelle</creator><creator>Schwarzenbacher, Robert</creator><creator>Bossy, Blaise</creator><creator>Perkins, Guy</creator><creator>Bossy-Wetzel, Ella</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity</title><author>Song, Wenjun ; Chen, Jin ; Petrilli, Alejandra ; Liot, Geraldine ; Klinglmayr, Eva ; Zhou, Yue ; Poquiz, Patrick ; Tjong, Jonathan ; Pouladi, Mahmoud A ; Hayden, Michael R ; Masliah, Eliezer ; Ellisman, Mark ; Rouiller, Isabelle ; Schwarzenbacher, Robert ; Bossy, Blaise ; Perkins, Guy ; Bossy-Wetzel, Ella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-8e722858568633e9f4ccec7b3eb1e30cf4bd59fecee8e066729729369f6844483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/1689/1558</topic><topic>631/378/1934</topic><topic>631/45/612/1240</topic><topic>Aggregates</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Disease Models, Animal</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Guanosine triphosphatase</topic><topic>Humans</topic><topic>Huntingtin Protein</topic><topic>Huntingtons disease</topic><topic>Infectious Diseases</topic><topic>letter</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Medicine</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotoxicity</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Wenjun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Petrilli, Alejandra</creatorcontrib><creatorcontrib>Liot, Geraldine</creatorcontrib><creatorcontrib>Klinglmayr, Eva</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Poquiz, Patrick</creatorcontrib><creatorcontrib>Tjong, Jonathan</creatorcontrib><creatorcontrib>Pouladi, Mahmoud A</creatorcontrib><creatorcontrib>Hayden, Michael R</creatorcontrib><creatorcontrib>Masliah, Eliezer</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Schwarzenbacher, Robert</creatorcontrib><creatorcontrib>Bossy, Blaise</creatorcontrib><creatorcontrib>Perkins, Guy</creatorcontrib><creatorcontrib>Bossy-Wetzel, Ella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Wenjun</au><au>Chen, Jin</au><au>Petrilli, Alejandra</au><au>Liot, Geraldine</au><au>Klinglmayr, Eva</au><au>Zhou, Yue</au><au>Poquiz, Patrick</au><au>Tjong, Jonathan</au><au>Pouladi, Mahmoud A</au><au>Hayden, Michael R</au><au>Masliah, Eliezer</au><au>Ellisman, Mark</au><au>Rouiller, Isabelle</au><au>Schwarzenbacher, Robert</au><au>Bossy, Blaise</au><au>Perkins, Guy</au><au>Bossy-Wetzel, Ella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>17</volume><issue>3</issue><spage>377</spage><epage>382</epage><pages>377-382</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Huntington's disease is characterized by mitochondrial dysfunction and neuron death. Now, Ella Bossy-Wetzel and her colleagues report that the aberrant interaction of mutant huntingtin protein with the mitochondrial fission protein DRP1 results in DRP1 activation. Blocking DRP1 activity can reduce mutant huntingtin–induced cell death. Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT ). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis 1 , 2 . Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin–mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21336284</pmid><doi>10.1038/nm.2313</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2011-03, Vol.17 (3), p.377-382
issn 1078-8956
1546-170X
language eng
recordid cdi_proquest_journals_858125799
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/378/1689/1558
631/378/1934
631/45/612/1240
Aggregates
Animals
Apoptosis
Biomedical and Life Sciences
Biomedicine
Cancer Research
Disease Models, Animal
Enzymatic activity
Enzymes
GTP Phosphohydrolases - metabolism
Guanosine triphosphatase
Humans
Huntingtin Protein
Huntingtons disease
Infectious Diseases
letter
Metabolic Diseases
Mice
Microtubule-Associated Proteins - metabolism
Mitochondria
Mitochondria - enzymology
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
Molecular Medicine
Mutants
Mutation
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurons
Neurosciences
Neurotoxicity
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Physiological aspects
Protein Binding
Proteins
title Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20huntingtin%20binds%20the%20mitochondrial%20fission%20GTPase%20dynamin-related%20protein-1%20and%20increases%20its%20enzymatic%20activity&rft.jtitle=Nature%20medicine&rft.au=Song,%20Wenjun&rft.date=2011-03-01&rft.volume=17&rft.issue=3&rft.spage=377&rft.epage=382&rft.pages=377-382&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.2313&rft_dat=%3Cgale_proqu%3EA251632053%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858125799&rft_id=info:pmid/21336284&rft_galeid=A251632053&rfr_iscdi=true