Physiological Response of Chinese Cabbage to Intercropping Systems

The physiological indices of Chinese cabbage(Brassica chinensis L.) grown under different intercropping systems used for this study included total soluble protein content, soluble sugar content, reducing sugar content, nitrate content, and pigment concentration. The objective of the present study is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2011-03, Vol.103 (2), p.331-336
Hauptverfasser: Cai, Hongjiao, You, Minsheng, Ryall, Krista, Li, Shiyou, Wang, Hong-yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 331
container_title Agronomy journal
container_volume 103
creator Cai, Hongjiao
You, Minsheng
Ryall, Krista
Li, Shiyou
Wang, Hong-yi
description The physiological indices of Chinese cabbage(Brassica chinensis L.) grown under different intercropping systems used for this study included total soluble protein content, soluble sugar content, reducing sugar content, nitrate content, and pigment concentration. The objective of the present study is to discover the physiological level changes in Chinese cabbage in intercropping systems. The intercropping systems studied involved Chinese cabbage- garlic (Allium sativum L.) (CG), and Chinese cabbage-lettuce (Lactuca sativa L.) (CL). Chinese cabbage monoculture served as control (CK). Overall, higher mean soluble protein content and nitrate content were found in Chinese cabbage grown in the intercropping systems than those in CK. Significantly higher chlorophyll a content was found in cabbages from CL than CK during the latter half of the growing season. No significant difference in soluble sugar concentrations was found in CG and CL, as compared with CK. Reducing sugar content varied over the growing period of the Chinese cabbage in CG and CL. These results suggest that Chinese cabbage intercropped with noncrucifer plants increase the plant nutrient content.
doi_str_mv 10.2134/agronj2010.0337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_857657161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295906991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-7f448137f6a6fa0d3d62f80cbefa82d5f3dd94dbde508faf35a97eaa00a52d453</originalsourceid><addsrcrecordid>eNqFkc1PwkAQxTdGExE9e7Qx8ViZ_WrLyWCjCCFiQM7N0O5CCXTrLsTw37tNiR497ezsm9_bvCHklsIjo1z0cGVNtWHg78B5fEY6VHAZQiTkOekAAAtpP2KX5Mq5DQClfUE75PljfXSl2ZpVmeM2mClXm8qpwOggXZeV8mWKyyWuVLA3wajaK5tbU9dltQrmR7dXO3dNLjRunbo5nV2yeH35TN_CyXQ4SgeTMOdxEoexFiKhPNYRRhqh4EXEdAL5UmlMWCE1L4q-KJaFkpBo1FxiP1aIAChZISTvkvuWW1vzdVBun23MwVbeMktkHMmYRtSLeq3I_9I5q3RW23KH9phRyJqcsr-csiYnP_FwwqLzEWiLVV663zEmgImIg9c9tbrvcquO_2GzwXDMBsPZ9H3c9E5Ody1Bo2n03mUx96_SL0dS6TE_4LaF0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857657161</pqid></control><display><type>article</type><title>Physiological Response of Chinese Cabbage to Intercropping Systems</title><source>Wiley Journals</source><creator>Cai, Hongjiao ; You, Minsheng ; Ryall, Krista ; Li, Shiyou ; Wang, Hong-yi</creator><creatorcontrib>Cai, Hongjiao ; You, Minsheng ; Ryall, Krista ; Li, Shiyou ; Wang, Hong-yi</creatorcontrib><description>The physiological indices of Chinese cabbage(Brassica chinensis L.) grown under different intercropping systems used for this study included total soluble protein content, soluble sugar content, reducing sugar content, nitrate content, and pigment concentration. The objective of the present study is to discover the physiological level changes in Chinese cabbage in intercropping systems. The intercropping systems studied involved Chinese cabbage- garlic (Allium sativum L.) (CG), and Chinese cabbage-lettuce (Lactuca sativa L.) (CL). Chinese cabbage monoculture served as control (CK). Overall, higher mean soluble protein content and nitrate content were found in Chinese cabbage grown in the intercropping systems than those in CK. Significantly higher chlorophyll a content was found in cabbages from CL than CK during the latter half of the growing season. No significant difference in soluble sugar concentrations was found in CG and CL, as compared with CK. Reducing sugar content varied over the growing period of the Chinese cabbage in CG and CL. These results suggest that Chinese cabbage intercropped with noncrucifer plants increase the plant nutrient content.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.2134/agronj2010.0337</identifier><identifier>CODEN: AGJOAT</identifier><language>eng</language><publisher>Madison: American Society of Agronomy</publisher><subject>Agricultural practices ; Agronomy. Soil science and plant productions ; Allium sativum ; Biological and medical sciences ; Brassica rapa subsp. chinensis ; cabbage ; Chinese cabbage ; chlorophyll ; Cropping systems. Cultivation. Soil tillage ; Fundamental and applied biological sciences. Psychology ; garlic ; General agronomy. Plant production ; Generalities. Cropping systems and patterns ; growing season ; Intercropping ; Lactuca sativa ; nitrates ; nutrient content ; physiological response ; protein content ; reducing sugars ; sugar content</subject><ispartof>Agronomy journal, 2011-03, Vol.103 (2), p.331-336</ispartof><rights>Copyright © 2011 by the American Society of Agronomy</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3787-7f448137f6a6fa0d3d62f80cbefa82d5f3dd94dbde508faf35a97eaa00a52d453</citedby><cites>FETCH-LOGICAL-c3787-7f448137f6a6fa0d3d62f80cbefa82d5f3dd94dbde508faf35a97eaa00a52d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fagronj2010.0337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fagronj2010.0337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24024630$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Hongjiao</creatorcontrib><creatorcontrib>You, Minsheng</creatorcontrib><creatorcontrib>Ryall, Krista</creatorcontrib><creatorcontrib>Li, Shiyou</creatorcontrib><creatorcontrib>Wang, Hong-yi</creatorcontrib><title>Physiological Response of Chinese Cabbage to Intercropping Systems</title><title>Agronomy journal</title><description>The physiological indices of Chinese cabbage(Brassica chinensis L.) grown under different intercropping systems used for this study included total soluble protein content, soluble sugar content, reducing sugar content, nitrate content, and pigment concentration. The objective of the present study is to discover the physiological level changes in Chinese cabbage in intercropping systems. The intercropping systems studied involved Chinese cabbage- garlic (Allium sativum L.) (CG), and Chinese cabbage-lettuce (Lactuca sativa L.) (CL). Chinese cabbage monoculture served as control (CK). Overall, higher mean soluble protein content and nitrate content were found in Chinese cabbage grown in the intercropping systems than those in CK. Significantly higher chlorophyll a content was found in cabbages from CL than CK during the latter half of the growing season. No significant difference in soluble sugar concentrations was found in CG and CL, as compared with CK. Reducing sugar content varied over the growing period of the Chinese cabbage in CG and CL. These results suggest that Chinese cabbage intercropped with noncrucifer plants increase the plant nutrient content.</description><subject>Agricultural practices</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Allium sativum</subject><subject>Biological and medical sciences</subject><subject>Brassica rapa subsp. chinensis</subject><subject>cabbage</subject><subject>Chinese cabbage</subject><subject>chlorophyll</subject><subject>Cropping systems. Cultivation. Soil tillage</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>garlic</subject><subject>General agronomy. Plant production</subject><subject>Generalities. Cropping systems and patterns</subject><subject>growing season</subject><subject>Intercropping</subject><subject>Lactuca sativa</subject><subject>nitrates</subject><subject>nutrient content</subject><subject>physiological response</subject><subject>protein content</subject><subject>reducing sugars</subject><subject>sugar content</subject><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1PwkAQxTdGExE9e7Qx8ViZ_WrLyWCjCCFiQM7N0O5CCXTrLsTw37tNiR497ezsm9_bvCHklsIjo1z0cGVNtWHg78B5fEY6VHAZQiTkOekAAAtpP2KX5Mq5DQClfUE75PljfXSl2ZpVmeM2mClXm8qpwOggXZeV8mWKyyWuVLA3wajaK5tbU9dltQrmR7dXO3dNLjRunbo5nV2yeH35TN_CyXQ4SgeTMOdxEoexFiKhPNYRRhqh4EXEdAL5UmlMWCE1L4q-KJaFkpBo1FxiP1aIAChZISTvkvuWW1vzdVBun23MwVbeMktkHMmYRtSLeq3I_9I5q3RW23KH9phRyJqcsr-csiYnP_FwwqLzEWiLVV663zEmgImIg9c9tbrvcquO_2GzwXDMBsPZ9H3c9E5Ody1Bo2n03mUx96_SL0dS6TE_4LaF0Q</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Cai, Hongjiao</creator><creator>You, Minsheng</creator><creator>Ryall, Krista</creator><creator>Li, Shiyou</creator><creator>Wang, Hong-yi</creator><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201103</creationdate><title>Physiological Response of Chinese Cabbage to Intercropping Systems</title><author>Cai, Hongjiao ; You, Minsheng ; Ryall, Krista ; Li, Shiyou ; Wang, Hong-yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-7f448137f6a6fa0d3d62f80cbefa82d5f3dd94dbde508faf35a97eaa00a52d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural practices</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Allium sativum</topic><topic>Biological and medical sciences</topic><topic>Brassica rapa subsp. chinensis</topic><topic>cabbage</topic><topic>Chinese cabbage</topic><topic>chlorophyll</topic><topic>Cropping systems. Cultivation. Soil tillage</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>garlic</topic><topic>General agronomy. Plant production</topic><topic>Generalities. Cropping systems and patterns</topic><topic>growing season</topic><topic>Intercropping</topic><topic>Lactuca sativa</topic><topic>nitrates</topic><topic>nutrient content</topic><topic>physiological response</topic><topic>protein content</topic><topic>reducing sugars</topic><topic>sugar content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Hongjiao</creatorcontrib><creatorcontrib>You, Minsheng</creatorcontrib><creatorcontrib>Ryall, Krista</creatorcontrib><creatorcontrib>Li, Shiyou</creatorcontrib><creatorcontrib>Wang, Hong-yi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Hongjiao</au><au>You, Minsheng</au><au>Ryall, Krista</au><au>Li, Shiyou</au><au>Wang, Hong-yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological Response of Chinese Cabbage to Intercropping Systems</atitle><jtitle>Agronomy journal</jtitle><date>2011-03</date><risdate>2011</risdate><volume>103</volume><issue>2</issue><spage>331</spage><epage>336</epage><pages>331-336</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><coden>AGJOAT</coden><abstract>The physiological indices of Chinese cabbage(Brassica chinensis L.) grown under different intercropping systems used for this study included total soluble protein content, soluble sugar content, reducing sugar content, nitrate content, and pigment concentration. The objective of the present study is to discover the physiological level changes in Chinese cabbage in intercropping systems. The intercropping systems studied involved Chinese cabbage- garlic (Allium sativum L.) (CG), and Chinese cabbage-lettuce (Lactuca sativa L.) (CL). Chinese cabbage monoculture served as control (CK). Overall, higher mean soluble protein content and nitrate content were found in Chinese cabbage grown in the intercropping systems than those in CK. Significantly higher chlorophyll a content was found in cabbages from CL than CK during the latter half of the growing season. No significant difference in soluble sugar concentrations was found in CG and CL, as compared with CK. Reducing sugar content varied over the growing period of the Chinese cabbage in CG and CL. These results suggest that Chinese cabbage intercropped with noncrucifer plants increase the plant nutrient content.</abstract><cop>Madison</cop><pub>American Society of Agronomy</pub><doi>10.2134/agronj2010.0337</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 2011-03, Vol.103 (2), p.331-336
issn 0002-1962
1435-0645
language eng
recordid cdi_proquest_journals_857657161
source Wiley Journals
subjects Agricultural practices
Agronomy. Soil science and plant productions
Allium sativum
Biological and medical sciences
Brassica rapa subsp. chinensis
cabbage
Chinese cabbage
chlorophyll
Cropping systems. Cultivation. Soil tillage
Fundamental and applied biological sciences. Psychology
garlic
General agronomy. Plant production
Generalities. Cropping systems and patterns
growing season
Intercropping
Lactuca sativa
nitrates
nutrient content
physiological response
protein content
reducing sugars
sugar content
title Physiological Response of Chinese Cabbage to Intercropping Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20Response%20of%20Chinese%20Cabbage%20to%20Intercropping%20Systems&rft.jtitle=Agronomy%20journal&rft.au=Cai,%20Hongjiao&rft.date=2011-03&rft.volume=103&rft.issue=2&rft.spage=331&rft.epage=336&rft.pages=331-336&rft.issn=0002-1962&rft.eissn=1435-0645&rft.coden=AGJOAT&rft_id=info:doi/10.2134/agronj2010.0337&rft_dat=%3Cproquest_cross%3E2295906991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857657161&rft_id=info:pmid/&rfr_iscdi=true