Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications

To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2009-02, Vol.14 (1), p.105-118
Hauptverfasser: Kyoungchul Kong, Joonbum Bae, Tomizuka, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 105
container_title IEEE/ASME transactions on mechatronics
container_volume 14
creator Kyoungchul Kong
Joonbum Bae
Tomizuka, M.
description To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.
doi_str_mv 10.1109/TMECH.2008.2004561
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857503374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4783213</ieee_id><sourcerecordid>2295557901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWKt_QDfBhbupySTzyLKU1hZahFrBXchk7kDKdDImmYX_3vSBCxe5yeV-53LIQeiRkgmlRLzuNvPZcpISUh4Lz3J6hUZUcJoQyr-u45uULOGcZbfozvs9iRAldIT6me2Csy22Dd7aoNwP_gBnwON5q3wwGk91GFSwDjfxrGpQLV5YpyHZ2BouU2M7bDq8HA6qS7a2sgGvugBO6dNo2vet0SfM36ObRrUeHi73GH0u5rvZMlm_v61m03WiOSchqepMpdFhTnRV5aJMtcpVXjQa0oYxQkTOKQMdW1FQlXLG60opQnKmagElY2P0ct7bO_s9gA_yYLyGtlUd2MFLxnkhCiEi-PwP3NvBddGbLLMiI4wVPELpGdLOeu-gkb0zh_hbkhJ5TECeEpDHBOQlgSh6OosMAPwJeFGylDL2C9LXgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857503374</pqid></control><display><type>article</type><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</creator><creatorcontrib>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</creatorcontrib><description>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2008.2004561</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Biological system modeling ; Disturbance observer (DOB) ; Force control ; force-mode control ; Friction ; Human robot interaction ; Impedance ; Joints ; motor impedance ; Pneumatic actuators ; rotary series elastic actuator (RSEA) ; Springs ; Torque control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2009-02, Vol.14 (1), p.105-118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</citedby><cites>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4783213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4783213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyoungchul Kong</creatorcontrib><creatorcontrib>Joonbum Bae</creatorcontrib><creatorcontrib>Tomizuka, M.</creatorcontrib><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</description><subject>Algorithm design and analysis</subject><subject>Biological system modeling</subject><subject>Disturbance observer (DOB)</subject><subject>Force control</subject><subject>force-mode control</subject><subject>Friction</subject><subject>Human robot interaction</subject><subject>Impedance</subject><subject>Joints</subject><subject>motor impedance</subject><subject>Pneumatic actuators</subject><subject>rotary series elastic actuator (RSEA)</subject><subject>Springs</subject><subject>Torque control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtLAzEUhYMoWKt_QDfBhbupySTzyLKU1hZahFrBXchk7kDKdDImmYX_3vSBCxe5yeV-53LIQeiRkgmlRLzuNvPZcpISUh4Lz3J6hUZUcJoQyr-u45uULOGcZbfozvs9iRAldIT6me2Csy22Dd7aoNwP_gBnwON5q3wwGk91GFSwDjfxrGpQLV5YpyHZ2BouU2M7bDq8HA6qS7a2sgGvugBO6dNo2vet0SfM36ObRrUeHi73GH0u5rvZMlm_v61m03WiOSchqepMpdFhTnRV5aJMtcpVXjQa0oYxQkTOKQMdW1FQlXLG60opQnKmagElY2P0ct7bO_s9gA_yYLyGtlUd2MFLxnkhCiEi-PwP3NvBddGbLLMiI4wVPELpGdLOeu-gkb0zh_hbkhJ5TECeEpDHBOQlgSh6OosMAPwJeFGylDL2C9LXgoI</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Kyoungchul Kong</creator><creator>Joonbum Bae</creator><creator>Tomizuka, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090201</creationdate><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><author>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological system modeling</topic><topic>Disturbance observer (DOB)</topic><topic>Force control</topic><topic>force-mode control</topic><topic>Friction</topic><topic>Human robot interaction</topic><topic>Impedance</topic><topic>Joints</topic><topic>motor impedance</topic><topic>Pneumatic actuators</topic><topic>rotary series elastic actuator (RSEA)</topic><topic>Springs</topic><topic>Torque control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyoungchul Kong</creatorcontrib><creatorcontrib>Joonbum Bae</creatorcontrib><creatorcontrib>Tomizuka, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyoungchul Kong</au><au>Joonbum Bae</au><au>Tomizuka, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>14</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2008.2004561</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2009-02, Vol.14 (1), p.105-118
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_857503374
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Biological system modeling
Disturbance observer (DOB)
Force control
force-mode control
Friction
Human robot interaction
Impedance
Joints
motor impedance
Pneumatic actuators
rotary series elastic actuator (RSEA)
Springs
Torque control
title Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Rotary%20Series%20Elastic%20Actuator%20for%20Ideal%20Force-Mode%20Actuation%20in%20Human-Robot%20Interaction%20Applications&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Kyoungchul%20Kong&rft.date=2009-02-01&rft.volume=14&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2008.2004561&rft_dat=%3Cproquest_RIE%3E2295557901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857503374&rft_id=info:pmid/&rft_ieee_id=4783213&rfr_iscdi=true