Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications
To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorith...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2009-02, Vol.14 (1), p.105-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 14 |
creator | Kyoungchul Kong Joonbum Bae Tomizuka, M. |
description | To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments. |
doi_str_mv | 10.1109/TMECH.2008.2004561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857503374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4783213</ieee_id><sourcerecordid>2295557901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWKt_QDfBhbupySTzyLKU1hZahFrBXchk7kDKdDImmYX_3vSBCxe5yeV-53LIQeiRkgmlRLzuNvPZcpISUh4Lz3J6hUZUcJoQyr-u45uULOGcZbfozvs9iRAldIT6me2Csy22Dd7aoNwP_gBnwON5q3wwGk91GFSwDjfxrGpQLV5YpyHZ2BouU2M7bDq8HA6qS7a2sgGvugBO6dNo2vet0SfM36ObRrUeHi73GH0u5rvZMlm_v61m03WiOSchqepMpdFhTnRV5aJMtcpVXjQa0oYxQkTOKQMdW1FQlXLG60opQnKmagElY2P0ct7bO_s9gA_yYLyGtlUd2MFLxnkhCiEi-PwP3NvBddGbLLMiI4wVPELpGdLOeu-gkb0zh_hbkhJ5TECeEpDHBOQlgSh6OosMAPwJeFGylDL2C9LXgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857503374</pqid></control><display><type>article</type><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</creator><creatorcontrib>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</creatorcontrib><description>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2008.2004561</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Biological system modeling ; Disturbance observer (DOB) ; Force control ; force-mode control ; Friction ; Human robot interaction ; Impedance ; Joints ; motor impedance ; Pneumatic actuators ; rotary series elastic actuator (RSEA) ; Springs ; Torque control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2009-02, Vol.14 (1), p.105-118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</citedby><cites>FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4783213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4783213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyoungchul Kong</creatorcontrib><creatorcontrib>Joonbum Bae</creatorcontrib><creatorcontrib>Tomizuka, M.</creatorcontrib><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</description><subject>Algorithm design and analysis</subject><subject>Biological system modeling</subject><subject>Disturbance observer (DOB)</subject><subject>Force control</subject><subject>force-mode control</subject><subject>Friction</subject><subject>Human robot interaction</subject><subject>Impedance</subject><subject>Joints</subject><subject>motor impedance</subject><subject>Pneumatic actuators</subject><subject>rotary series elastic actuator (RSEA)</subject><subject>Springs</subject><subject>Torque control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtLAzEUhYMoWKt_QDfBhbupySTzyLKU1hZahFrBXchk7kDKdDImmYX_3vSBCxe5yeV-53LIQeiRkgmlRLzuNvPZcpISUh4Lz3J6hUZUcJoQyr-u45uULOGcZbfozvs9iRAldIT6me2Csy22Dd7aoNwP_gBnwON5q3wwGk91GFSwDjfxrGpQLV5YpyHZ2BouU2M7bDq8HA6qS7a2sgGvugBO6dNo2vet0SfM36ObRrUeHi73GH0u5rvZMlm_v61m03WiOSchqepMpdFhTnRV5aJMtcpVXjQa0oYxQkTOKQMdW1FQlXLG60opQnKmagElY2P0ct7bO_s9gA_yYLyGtlUd2MFLxnkhCiEi-PwP3NvBddGbLLMiI4wVPELpGdLOeu-gkb0zh_hbkhJ5TECeEpDHBOQlgSh6OosMAPwJeFGylDL2C9LXgoI</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Kyoungchul Kong</creator><creator>Joonbum Bae</creator><creator>Tomizuka, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090201</creationdate><title>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</title><author>Kyoungchul Kong ; Joonbum Bae ; Tomizuka, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-bd5a210160cbb6982ca6a67fce2f330096413ecce2971a2434dbaa0063ad9e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological system modeling</topic><topic>Disturbance observer (DOB)</topic><topic>Force control</topic><topic>force-mode control</topic><topic>Friction</topic><topic>Human robot interaction</topic><topic>Impedance</topic><topic>Joints</topic><topic>motor impedance</topic><topic>Pneumatic actuators</topic><topic>rotary series elastic actuator (RSEA)</topic><topic>Springs</topic><topic>Torque control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyoungchul Kong</creatorcontrib><creatorcontrib>Joonbum Bae</creatorcontrib><creatorcontrib>Tomizuka, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyoungchul Kong</au><au>Joonbum Bae</au><au>Tomizuka, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>14</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2008.2004561</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2009-02, Vol.14 (1), p.105-118 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_857503374 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Biological system modeling Disturbance observer (DOB) Force control force-mode control Friction Human robot interaction Impedance Joints motor impedance Pneumatic actuators rotary series elastic actuator (RSEA) Springs Torque control |
title | Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Rotary%20Series%20Elastic%20Actuator%20for%20Ideal%20Force-Mode%20Actuation%20in%20Human-Robot%20Interaction%20Applications&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Kyoungchul%20Kong&rft.date=2009-02-01&rft.volume=14&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2008.2004561&rft_dat=%3Cproquest_RIE%3E2295557901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857503374&rft_id=info:pmid/&rft_ieee_id=4783213&rfr_iscdi=true |