InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices

High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2009-09, Vol.45 (9), p.1201-1209
Hauptverfasser: Shinoda, K., Makino, S., Kitatani, T., Shiota, T., Fukamachi, T., Aoki, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1209
container_issue 9
container_start_page 1201
container_title IEEE journal of quantum electronics
container_volume 45
creator Shinoda, K.
Makino, S.
Kitatani, T.
Shiota, T.
Fukamachi, T.
Aoki, M.
description High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.
doi_str_mv 10.1109/JQE.2009.2020304
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857502951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5257433</ieee_id><sourcerecordid>2295533961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</originalsourceid><addsrcrecordid>eNpdkcFLIzEUxoMoWOveBS-DIHsazZskncyxaNVKpbuwyx5DzLypKdOkJmlh_3tTWzx4efnC-32Ply-EXAC9AaDN7fPvyU1FaZNLRRnlR2QAQsgSamDHZEApyLKBpj4lZzEu85VzSQdkOXWPetyPY_kp4q_iCRMGv9K5Wt0XL9753qY3a4qpS7gIOlnvis6HYtxutTPYFjPvFuU_vcUe3SK9FfN18lmbFLzLvnvcWoPxnJx0uo_443AOyd-HyZ-7p3I2f5zejWelYaJKJQCI11pLxjhvWsOzro3kNZhRJzhDNjK0aqWu8zO1aAWyV4qV6SAzHEYNG5Kf-7nr4N83GJNa2Wiw77VDv4lKjhopgANk8uobufSb4PJySopa0KoRO4juIRN8jAE7tQ52pcN_BVTtolc5erWLXh2iz5brw1wdje67kGOy8ctX5W_gjLLMXe45i4hfbVGJ3GbsA2Y2i4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857502951</pqid></control><display><type>article</type><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</creator><creatorcontrib>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</creatorcontrib><description>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2009.2020304</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bragg reflectors ; Cleaning ; Distributed Bragg reflectors ; Distributed feedback devices ; Drives ; Exact sciences and technology ; Fabrication ; Fundamental areas of phenomenology (including applications) ; Indium phosphide ; Indium phosphides ; integrated optoelectronics ; Laser feedback ; Lasers ; Modulation ; Monolithic integrated circuits ; Optical components ; Optical devices ; Optical feedback ; Optics ; Optoelectronic devices ; Physics ; Quantum electronics ; semiconductor lasers ; Semiconductor lasers; laser diodes</subject><ispartof>IEEE journal of quantum electronics, 2009-09, Vol.45 (9), p.1201-1209</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</citedby><cites>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5257433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5257433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21974303$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinoda, K.</creatorcontrib><creatorcontrib>Makino, S.</creatorcontrib><creatorcontrib>Kitatani, T.</creatorcontrib><creatorcontrib>Shiota, T.</creatorcontrib><creatorcontrib>Fukamachi, T.</creatorcontrib><creatorcontrib>Aoki, M.</creatorcontrib><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</description><subject>Bragg reflectors</subject><subject>Cleaning</subject><subject>Distributed Bragg reflectors</subject><subject>Distributed feedback devices</subject><subject>Drives</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indium phosphide</subject><subject>Indium phosphides</subject><subject>integrated optoelectronics</subject><subject>Laser feedback</subject><subject>Lasers</subject><subject>Modulation</subject><subject>Monolithic integrated circuits</subject><subject>Optical components</subject><subject>Optical devices</subject><subject>Optical feedback</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Quantum electronics</subject><subject>semiconductor lasers</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFLIzEUxoMoWOveBS-DIHsazZskncyxaNVKpbuwyx5DzLypKdOkJmlh_3tTWzx4efnC-32Ply-EXAC9AaDN7fPvyU1FaZNLRRnlR2QAQsgSamDHZEApyLKBpj4lZzEu85VzSQdkOXWPetyPY_kp4q_iCRMGv9K5Wt0XL9753qY3a4qpS7gIOlnvis6HYtxutTPYFjPvFuU_vcUe3SK9FfN18lmbFLzLvnvcWoPxnJx0uo_443AOyd-HyZ-7p3I2f5zejWelYaJKJQCI11pLxjhvWsOzro3kNZhRJzhDNjK0aqWu8zO1aAWyV4qV6SAzHEYNG5Kf-7nr4N83GJNa2Wiw77VDv4lKjhopgANk8uobufSb4PJySopa0KoRO4juIRN8jAE7tQ52pcN_BVTtolc5erWLXh2iz5brw1wdje67kGOy8ctX5W_gjLLMXe45i4hfbVGJ3GbsA2Y2i4E</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Shinoda, K.</creator><creator>Makino, S.</creator><creator>Kitatani, T.</creator><creator>Shiota, T.</creator><creator>Fukamachi, T.</creator><creator>Aoki, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><author>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bragg reflectors</topic><topic>Cleaning</topic><topic>Distributed Bragg reflectors</topic><topic>Distributed feedback devices</topic><topic>Drives</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indium phosphide</topic><topic>Indium phosphides</topic><topic>integrated optoelectronics</topic><topic>Laser feedback</topic><topic>Lasers</topic><topic>Modulation</topic><topic>Monolithic integrated circuits</topic><topic>Optical components</topic><topic>Optical devices</topic><topic>Optical feedback</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Quantum electronics</topic><topic>semiconductor lasers</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinoda, K.</creatorcontrib><creatorcontrib>Makino, S.</creatorcontrib><creatorcontrib>Kitatani, T.</creatorcontrib><creatorcontrib>Shiota, T.</creatorcontrib><creatorcontrib>Fukamachi, T.</creatorcontrib><creatorcontrib>Aoki, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shinoda, K.</au><au>Makino, S.</au><au>Kitatani, T.</au><au>Shiota, T.</au><au>Fukamachi, T.</au><au>Aoki, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>45</volume><issue>9</issue><spage>1201</spage><epage>1209</epage><pages>1201-1209</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2009.2020304</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2009-09, Vol.45 (9), p.1201-1209
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_journals_857502951
source IEEE Electronic Library (IEL)
subjects Bragg reflectors
Cleaning
Distributed Bragg reflectors
Distributed feedback devices
Drives
Exact sciences and technology
Fabrication
Fundamental areas of phenomenology (including applications)
Indium phosphide
Indium phosphides
integrated optoelectronics
Laser feedback
Lasers
Modulation
Monolithic integrated circuits
Optical components
Optical devices
Optical feedback
Optics
Optoelectronic devices
Physics
Quantum electronics
semiconductor lasers
Semiconductor lasers
laser diodes
title InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InGaAlAs-InGaAsP%20Heteromaterial%20Monolithic%20Integration%20for%20Advanced%20Long-Wavelength%20Optoelectronic%20Devices&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Shinoda,%20K.&rft.date=2009-09-01&rft.volume=45&rft.issue=9&rft.spage=1201&rft.epage=1209&rft.pages=1201-1209&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2009.2020304&rft_dat=%3Cproquest_RIE%3E2295533961%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857502951&rft_id=info:pmid/&rft_ieee_id=5257433&rfr_iscdi=true