InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices
High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2009-09, Vol.45 (9), p.1201-1209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1209 |
---|---|
container_issue | 9 |
container_start_page | 1201 |
container_title | IEEE journal of quantum electronics |
container_volume | 45 |
creator | Shinoda, K. Makino, S. Kitatani, T. Shiota, T. Fukamachi, T. Aoki, M. |
description | High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours. |
doi_str_mv | 10.1109/JQE.2009.2020304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857502951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5257433</ieee_id><sourcerecordid>2295533961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</originalsourceid><addsrcrecordid>eNpdkcFLIzEUxoMoWOveBS-DIHsazZskncyxaNVKpbuwyx5DzLypKdOkJmlh_3tTWzx4efnC-32Ply-EXAC9AaDN7fPvyU1FaZNLRRnlR2QAQsgSamDHZEApyLKBpj4lZzEu85VzSQdkOXWPetyPY_kp4q_iCRMGv9K5Wt0XL9753qY3a4qpS7gIOlnvis6HYtxutTPYFjPvFuU_vcUe3SK9FfN18lmbFLzLvnvcWoPxnJx0uo_443AOyd-HyZ-7p3I2f5zejWelYaJKJQCI11pLxjhvWsOzro3kNZhRJzhDNjK0aqWu8zO1aAWyV4qV6SAzHEYNG5Kf-7nr4N83GJNa2Wiw77VDv4lKjhopgANk8uobufSb4PJySopa0KoRO4juIRN8jAE7tQ52pcN_BVTtolc5erWLXh2iz5brw1wdje67kGOy8ctX5W_gjLLMXe45i4hfbVGJ3GbsA2Y2i4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857502951</pqid></control><display><type>article</type><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</creator><creatorcontrib>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</creatorcontrib><description>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2009.2020304</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bragg reflectors ; Cleaning ; Distributed Bragg reflectors ; Distributed feedback devices ; Drives ; Exact sciences and technology ; Fabrication ; Fundamental areas of phenomenology (including applications) ; Indium phosphide ; Indium phosphides ; integrated optoelectronics ; Laser feedback ; Lasers ; Modulation ; Monolithic integrated circuits ; Optical components ; Optical devices ; Optical feedback ; Optics ; Optoelectronic devices ; Physics ; Quantum electronics ; semiconductor lasers ; Semiconductor lasers; laser diodes</subject><ispartof>IEEE journal of quantum electronics, 2009-09, Vol.45 (9), p.1201-1209</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</citedby><cites>FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5257433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5257433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21974303$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinoda, K.</creatorcontrib><creatorcontrib>Makino, S.</creatorcontrib><creatorcontrib>Kitatani, T.</creatorcontrib><creatorcontrib>Shiota, T.</creatorcontrib><creatorcontrib>Fukamachi, T.</creatorcontrib><creatorcontrib>Aoki, M.</creatorcontrib><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</description><subject>Bragg reflectors</subject><subject>Cleaning</subject><subject>Distributed Bragg reflectors</subject><subject>Distributed feedback devices</subject><subject>Drives</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indium phosphide</subject><subject>Indium phosphides</subject><subject>integrated optoelectronics</subject><subject>Laser feedback</subject><subject>Lasers</subject><subject>Modulation</subject><subject>Monolithic integrated circuits</subject><subject>Optical components</subject><subject>Optical devices</subject><subject>Optical feedback</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Quantum electronics</subject><subject>semiconductor lasers</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFLIzEUxoMoWOveBS-DIHsazZskncyxaNVKpbuwyx5DzLypKdOkJmlh_3tTWzx4efnC-32Ply-EXAC9AaDN7fPvyU1FaZNLRRnlR2QAQsgSamDHZEApyLKBpj4lZzEu85VzSQdkOXWPetyPY_kp4q_iCRMGv9K5Wt0XL9753qY3a4qpS7gIOlnvis6HYtxutTPYFjPvFuU_vcUe3SK9FfN18lmbFLzLvnvcWoPxnJx0uo_443AOyd-HyZ-7p3I2f5zejWelYaJKJQCI11pLxjhvWsOzro3kNZhRJzhDNjK0aqWu8zO1aAWyV4qV6SAzHEYNG5Kf-7nr4N83GJNa2Wiw77VDv4lKjhopgANk8uobufSb4PJySopa0KoRO4juIRN8jAE7tQ52pcN_BVTtolc5erWLXh2iz5brw1wdje67kGOy8ctX5W_gjLLMXe45i4hfbVGJ3GbsA2Y2i4E</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Shinoda, K.</creator><creator>Makino, S.</creator><creator>Kitatani, T.</creator><creator>Shiota, T.</creator><creator>Fukamachi, T.</creator><creator>Aoki, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</title><author>Shinoda, K. ; Makino, S. ; Kitatani, T. ; Shiota, T. ; Fukamachi, T. ; Aoki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-1115b7a833449dc4b7a7c8471c6f543e36c02d8a7203a5d5e3b0e2cf184741693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bragg reflectors</topic><topic>Cleaning</topic><topic>Distributed Bragg reflectors</topic><topic>Distributed feedback devices</topic><topic>Drives</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indium phosphide</topic><topic>Indium phosphides</topic><topic>integrated optoelectronics</topic><topic>Laser feedback</topic><topic>Lasers</topic><topic>Modulation</topic><topic>Monolithic integrated circuits</topic><topic>Optical components</topic><topic>Optical devices</topic><topic>Optical feedback</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Quantum electronics</topic><topic>semiconductor lasers</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinoda, K.</creatorcontrib><creatorcontrib>Makino, S.</creatorcontrib><creatorcontrib>Kitatani, T.</creatorcontrib><creatorcontrib>Shiota, T.</creatorcontrib><creatorcontrib>Fukamachi, T.</creatorcontrib><creatorcontrib>Aoki, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shinoda, K.</au><au>Makino, S.</au><au>Kitatani, T.</au><au>Shiota, T.</au><au>Fukamachi, T.</au><au>Aoki, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>45</volume><issue>9</issue><spage>1201</spage><epage>1209</epage><pages>1201-1209</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>High-coupling-efficiency high-reliability hetero-material integration of InGaAlAs-based and InGaAsP-based optical components on a single InP substrate was achieved. A butt-jointing process with in situ cleaning was used to integrate an InGaAlAs-based component and an InGaAsP-based component. Optical-coupling efficiency at the butt-jointed interface of a novel multiple-butt-jointed laser was quantitatively estimated to be more than 97%. An InGaAlAs laser integrated with an InGaAsP-based component and an InGaAsP laser integrated with an InGaAlAs-based component were fabricated by the butt-jointing process. The fabricated 1.3- mum InGaAlAs laser integrated with an InGaAsP distributed Bragg reflector exhibited 100degC, 10-Gbps direct modulation at a low drive current of 14-mA peak-to-peak. Furthermore, the fabricated 1.55-mum InGaAsP distributed feedback laser integrated with an InGaAlAs electroabsorption modulator exhibited the first uncooled 10-Gbps 40-km transmission (with a 1-dB power penalty) from 0 to 85degC. Aging tests on both types of lasers showed no significant degradation in their driving current for more than one thousand hours.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2009.2020304</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2009-09, Vol.45 (9), p.1201-1209 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_journals_857502951 |
source | IEEE Electronic Library (IEL) |
subjects | Bragg reflectors Cleaning Distributed Bragg reflectors Distributed feedback devices Drives Exact sciences and technology Fabrication Fundamental areas of phenomenology (including applications) Indium phosphide Indium phosphides integrated optoelectronics Laser feedback Lasers Modulation Monolithic integrated circuits Optical components Optical devices Optical feedback Optics Optoelectronic devices Physics Quantum electronics semiconductor lasers Semiconductor lasers laser diodes |
title | InGaAlAs-InGaAsP Heteromaterial Monolithic Integration for Advanced Long-Wavelength Optoelectronic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InGaAlAs-InGaAsP%20Heteromaterial%20Monolithic%20Integration%20for%20Advanced%20Long-Wavelength%20Optoelectronic%20Devices&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Shinoda,%20K.&rft.date=2009-09-01&rft.volume=45&rft.issue=9&rft.spage=1201&rft.epage=1209&rft.pages=1201-1209&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2009.2020304&rft_dat=%3Cproquest_RIE%3E2295533961%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857502951&rft_id=info:pmid/&rft_ieee_id=5257433&rfr_iscdi=true |