Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions
We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one need...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2009-02, Vol.28 (2), p.269-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 2 |
container_start_page | 269 |
container_title | IEEE transactions on medical imaging |
container_volume | 28 |
creator | Descoteaux, M. Deriche, R. Knosche, T.R. Anwander, A. |
description | We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q -ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions. |
doi_str_mv | 10.1109/TMI.2008.2004424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857452053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4601462</ieee_id><sourcerecordid>867734986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-e5cc266fdae562f53fedb79d4bb8659945ce1a72c5c2bda5faeb7e01e759d763</originalsourceid><addsrcrecordid>eNqFkk1rFTEYhYMo9ra6FwQZXNRFmZpk8jXLems_4Ja6uAs3EpLMOzZlZnKbzIj992aYSwUXdpOQvM85kHOC0DuCTwnB9eftzfUpxVjNC2OUvUArwrkqKWffX6IVplKVGAt6gA5TuseYMI7r1-iA1EQpQtgK_TiHEWLvB59G7wozNMW3GKyxvltuttG4MfyMZnf3WHwxCZoiDMU69LsOfhcX3kYobqOHYTSjz5PzLIveTvMhvUGvWtMleLvfj9D24ut2fVVubi-v12eb0jHFxxK4c1SItjHABW151UJjZd0wa5Xgdc24A2IkddxR2xjeGrASMAHJ60aK6gidLLZ3ptO76HsTH3UwXl-dbbQfojc650MrRtgvkulPC72L4WGCNOreJwddZwYIU9JKSFmxWs2-x_8lhVAq514_C1LMMSdMZvDjP-B9mOKQs9GKS8YzWGUIL5CLIaUI7dObCNZz7zr3rufe9b73LPmw951sD81fwb7oDLxfAA8AT2Mm8pcQtPoDi9mxbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857452053</pqid></control><display><type>article</type><title>Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions</title><source>IEEE Electronic Library (IEL)</source><creator>Descoteaux, M. ; Deriche, R. ; Knosche, T.R. ; Anwander, A.</creator><creatorcontrib>Descoteaux, M. ; Deriche, R. ; Knosche, T.R. ; Anwander, A.</creatorcontrib><description>We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q -ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2008.2004424</identifier><identifier>PMID: 19188114</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anatomical connectivity ; Brain ; Brain - anatomy & histology ; Computer Science ; crossing fibres ; Deconvolution ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion tensor imaging ; diffusion tensor imaging (DTI) ; Distribution functions ; Echo-Planar Imaging - methods ; fibre tractography ; high angular resolution diffusion imaging (HARDI) ; High-resolution imaging ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image resolution ; Magnetic resonance imaging ; Medical Imaging ; Models, Neurological ; Models, Statistical ; Nerve Fibers - ultrastructure ; Normal Distribution ; orientation distribution function (ODF) ; q -ball imaging (QBI) ; Reproducibility of Results ; Sensitivity and Specificity ; Signal resolution ; spherical deconvolution (SD) ; Tensile stress</subject><ispartof>IEEE transactions on medical imaging, 2009-02, Vol.28 (2), p.269-286</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-e5cc266fdae562f53fedb79d4bb8659945ce1a72c5c2bda5faeb7e01e759d763</citedby><cites>FETCH-LOGICAL-c485t-e5cc266fdae562f53fedb79d4bb8659945ce1a72c5c2bda5faeb7e01e759d763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4601462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4601462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19188114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00423414$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Descoteaux, M.</creatorcontrib><creatorcontrib>Deriche, R.</creatorcontrib><creatorcontrib>Knosche, T.R.</creatorcontrib><creatorcontrib>Anwander, A.</creatorcontrib><title>Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q -ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions.</description><subject>Algorithms</subject><subject>Anatomical connectivity</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Computer Science</subject><subject>crossing fibres</subject><subject>Deconvolution</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion tensor imaging</subject><subject>diffusion tensor imaging (DTI)</subject><subject>Distribution functions</subject><subject>Echo-Planar Imaging - methods</subject><subject>fibre tractography</subject><subject>high angular resolution diffusion imaging (HARDI)</subject><subject>High-resolution imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Magnetic resonance imaging</subject><subject>Medical Imaging</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Nerve Fibers - ultrastructure</subject><subject>Normal Distribution</subject><subject>orientation distribution function (ODF)</subject><subject>q -ball imaging (QBI)</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal resolution</subject><subject>spherical deconvolution (SD)</subject><subject>Tensile stress</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkk1rFTEYhYMo9ra6FwQZXNRFmZpk8jXLems_4Ja6uAs3EpLMOzZlZnKbzIj992aYSwUXdpOQvM85kHOC0DuCTwnB9eftzfUpxVjNC2OUvUArwrkqKWffX6IVplKVGAt6gA5TuseYMI7r1-iA1EQpQtgK_TiHEWLvB59G7wozNMW3GKyxvltuttG4MfyMZnf3WHwxCZoiDMU69LsOfhcX3kYobqOHYTSjz5PzLIveTvMhvUGvWtMleLvfj9D24ut2fVVubi-v12eb0jHFxxK4c1SItjHABW151UJjZd0wa5Xgdc24A2IkddxR2xjeGrASMAHJ60aK6gidLLZ3ptO76HsTH3UwXl-dbbQfojc650MrRtgvkulPC72L4WGCNOreJwddZwYIU9JKSFmxWs2-x_8lhVAq514_C1LMMSdMZvDjP-B9mOKQs9GKS8YzWGUIL5CLIaUI7dObCNZz7zr3rufe9b73LPmw951sD81fwb7oDLxfAA8AT2Mm8pcQtPoDi9mxbQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Descoteaux, M.</creator><creator>Deriche, R.</creator><creator>Knosche, T.R.</creator><creator>Anwander, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20090201</creationdate><title>Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions</title><author>Descoteaux, M. ; Deriche, R. ; Knosche, T.R. ; Anwander, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-e5cc266fdae562f53fedb79d4bb8659945ce1a72c5c2bda5faeb7e01e759d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Anatomical connectivity</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Computer Science</topic><topic>crossing fibres</topic><topic>Deconvolution</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion tensor imaging</topic><topic>diffusion tensor imaging (DTI)</topic><topic>Distribution functions</topic><topic>Echo-Planar Imaging - methods</topic><topic>fibre tractography</topic><topic>high angular resolution diffusion imaging (HARDI)</topic><topic>High-resolution imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Magnetic resonance imaging</topic><topic>Medical Imaging</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Nerve Fibers - ultrastructure</topic><topic>Normal Distribution</topic><topic>orientation distribution function (ODF)</topic><topic>q -ball imaging (QBI)</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal resolution</topic><topic>spherical deconvolution (SD)</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Descoteaux, M.</creatorcontrib><creatorcontrib>Deriche, R.</creatorcontrib><creatorcontrib>Knosche, T.R.</creatorcontrib><creatorcontrib>Anwander, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Descoteaux, M.</au><au>Deriche, R.</au><au>Knosche, T.R.</au><au>Anwander, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>28</volume><issue>2</issue><spage>269</spage><epage>286</epage><pages>269-286</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q -ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19188114</pmid><doi>10.1109/TMI.2008.2004424</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2009-02, Vol.28 (2), p.269-286 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_857452053 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anatomical connectivity Brain Brain - anatomy & histology Computer Science crossing fibres Deconvolution Diffusion Magnetic Resonance Imaging - methods Diffusion tensor imaging diffusion tensor imaging (DTI) Distribution functions Echo-Planar Imaging - methods fibre tractography high angular resolution diffusion imaging (HARDI) High-resolution imaging Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Image reconstruction Image resolution Magnetic resonance imaging Medical Imaging Models, Neurological Models, Statistical Nerve Fibers - ultrastructure Normal Distribution orientation distribution function (ODF) q -ball imaging (QBI) Reproducibility of Results Sensitivity and Specificity Signal resolution spherical deconvolution (SD) Tensile stress |
title | Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20and%20Probabilistic%20Tractography%20Based%20on%20Complex%20Fibre%20Orientation%20Distributions&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Descoteaux,%20M.&rft.date=2009-02-01&rft.volume=28&rft.issue=2&rft.spage=269&rft.epage=286&rft.pages=269-286&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2008.2004424&rft_dat=%3Cproquest_RIE%3E867734986%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857452053&rft_id=info:pmid/19188114&rft_ieee_id=4601462&rfr_iscdi=true |