Histogram-based traffic anomaly detection
Identifying network anomalies is essential in enterprise and provider networks for diagnosing events, like attacks or failures, that severely impact performance, security, and Service Level Agreements (SLAs). Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing dif...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2009-06, Vol.6 (2), p.110-121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 2 |
container_start_page | 110 |
container_title | IEEE eTransactions on network and service management |
container_volume | 6 |
creator | Kind, A. Stoecklin, M.P. Dimitropoulos, X. |
description | Identifying network anomalies is essential in enterprise and provider networks for diagnosing events, like attacks or failures, that severely impact performance, security, and Service Level Agreements (SLAs). Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing different packet header features, like IP addresses and port numbers. In this work, we describe a new approach to feature-based anomaly detection that constructs histograms of different traffic features, models histogram patterns, and identifies deviations from the created models. We assess the strengths and weaknesses of many design options, like the utility of different features, the construction of feature histograms, the modeling and clustering algorithms, and the detection of deviations. Compared to previous feature-based anomaly detection approaches, our work differs by constructing detailed histogram models, rather than using coarse entropy-based distribution approximations. We evaluate histogram-based anomaly detection and compare it to previous approaches using collected network traffic traces. Our results demonstrate the effectiveness of our technique in identifying a wide range of anomalies. The assessed technical details are generic and, therefore, we expect that the derived insights will be useful for similar future research efforts. |
doi_str_mv | 10.1109/TNSM.2009.090604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_857427107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5374831</ieee_id><sourcerecordid>2294844071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-478dd85795e6817087cc588abb689cfa46a35440e636fba001b5823278e7ca403</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwI7FULIgh5Rx_nUdUFYpUYKDMluM4KFU-ip0O_fckCkKIhelueN5Xdw8hlxTmlIK-27y8Pc9TAD0HDRL4EZlQzdKEC6aOf-2n5CzGLYBAqtMJuV2VsWs_gq2TzEafz7pgi6J0M9u0ta0Os9x33nVl25yTk8JW0V98zyl5f1huFqtk_fr4tLhfJ45R2SVcYZ6jUFp4iVQBKucEos0yidoVlkvLBOfgJZNFZgFoJjBlqUKvnOXApuRm7N2F9nPvY2fqMjpfVbbx7T4aVAJSLhn7n6SITCAbOq__kNt2H5r-DdOfylNFQfUQjJALbYzBF2YXytqGg6FgBsdmcGwGx2Z03Eeuxkjpvf_Be8scGWVfF1Z1Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427107</pqid></control><display><type>article</type><title>Histogram-based traffic anomaly detection</title><source>IEEE Electronic Library (IEL)</source><creator>Kind, A. ; Stoecklin, M.P. ; Dimitropoulos, X.</creator><creatorcontrib>Kind, A. ; Stoecklin, M.P. ; Dimitropoulos, X.</creatorcontrib><description>Identifying network anomalies is essential in enterprise and provider networks for diagnosing events, like attacks or failures, that severely impact performance, security, and Service Level Agreements (SLAs). Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing different packet header features, like IP addresses and port numbers. In this work, we describe a new approach to feature-based anomaly detection that constructs histograms of different traffic features, models histogram patterns, and identifies deviations from the created models. We assess the strengths and weaknesses of many design options, like the utility of different features, the construction of feature histograms, the modeling and clustering algorithms, and the detection of deviations. Compared to previous feature-based anomaly detection approaches, our work differs by constructing detailed histogram models, rather than using coarse entropy-based distribution approximations. We evaluate histogram-based anomaly detection and compare it to previous approaches using collected network traffic traces. Our results demonstrate the effectiveness of our technique in identifying a wide range of anomalies. The assessed technical details are generic and, therefore, we expect that the derived insights will be useful for similar future research efforts.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2009.090604</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Anomalies ; Clustering algorithms ; clustering methods ; Computer network security ; Computer vision ; Construction ; Deviation ; Event detection ; Extraterrestrial measurements ; Histograms ; Intrusion detection ; Mathematical models ; Monitoring ; Network security ; Networks ; Telecommunication traffic ; Traffic control ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE eTransactions on network and service management, 2009-06, Vol.6 (2), p.110-121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-478dd85795e6817087cc588abb689cfa46a35440e636fba001b5823278e7ca403</citedby><cites>FETCH-LOGICAL-c316t-478dd85795e6817087cc588abb689cfa46a35440e636fba001b5823278e7ca403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5374831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5374831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kind, A.</creatorcontrib><creatorcontrib>Stoecklin, M.P.</creatorcontrib><creatorcontrib>Dimitropoulos, X.</creatorcontrib><title>Histogram-based traffic anomaly detection</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Identifying network anomalies is essential in enterprise and provider networks for diagnosing events, like attacks or failures, that severely impact performance, security, and Service Level Agreements (SLAs). Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing different packet header features, like IP addresses and port numbers. In this work, we describe a new approach to feature-based anomaly detection that constructs histograms of different traffic features, models histogram patterns, and identifies deviations from the created models. We assess the strengths and weaknesses of many design options, like the utility of different features, the construction of feature histograms, the modeling and clustering algorithms, and the detection of deviations. Compared to previous feature-based anomaly detection approaches, our work differs by constructing detailed histogram models, rather than using coarse entropy-based distribution approximations. We evaluate histogram-based anomaly detection and compare it to previous approaches using collected network traffic traces. Our results demonstrate the effectiveness of our technique in identifying a wide range of anomalies. The assessed technical details are generic and, therefore, we expect that the derived insights will be useful for similar future research efforts.</description><subject>Algorithm design and analysis</subject><subject>Anomalies</subject><subject>Clustering algorithms</subject><subject>clustering methods</subject><subject>Computer network security</subject><subject>Computer vision</subject><subject>Construction</subject><subject>Deviation</subject><subject>Event detection</subject><subject>Extraterrestrial measurements</subject><subject>Histograms</subject><subject>Intrusion detection</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Network security</subject><subject>Networks</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkD1PwzAQhi0EEqWwI7FULIgh5Rx_nUdUFYpUYKDMluM4KFU-ip0O_fckCkKIhelueN5Xdw8hlxTmlIK-27y8Pc9TAD0HDRL4EZlQzdKEC6aOf-2n5CzGLYBAqtMJuV2VsWs_gq2TzEafz7pgi6J0M9u0ta0Os9x33nVl25yTk8JW0V98zyl5f1huFqtk_fr4tLhfJ45R2SVcYZ6jUFp4iVQBKucEos0yidoVlkvLBOfgJZNFZgFoJjBlqUKvnOXApuRm7N2F9nPvY2fqMjpfVbbx7T4aVAJSLhn7n6SITCAbOq__kNt2H5r-DdOfylNFQfUQjJALbYzBF2YXytqGg6FgBsdmcGwGx2Z03Eeuxkjpvf_Be8scGWVfF1Z1Hw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Kind, A.</creator><creator>Stoecklin, M.P.</creator><creator>Dimitropoulos, X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200906</creationdate><title>Histogram-based traffic anomaly detection</title><author>Kind, A. ; Stoecklin, M.P. ; Dimitropoulos, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-478dd85795e6817087cc588abb689cfa46a35440e636fba001b5823278e7ca403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Anomalies</topic><topic>Clustering algorithms</topic><topic>clustering methods</topic><topic>Computer network security</topic><topic>Computer vision</topic><topic>Construction</topic><topic>Deviation</topic><topic>Event detection</topic><topic>Extraterrestrial measurements</topic><topic>Histograms</topic><topic>Intrusion detection</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Network security</topic><topic>Networks</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kind, A.</creatorcontrib><creatorcontrib>Stoecklin, M.P.</creatorcontrib><creatorcontrib>Dimitropoulos, X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kind, A.</au><au>Stoecklin, M.P.</au><au>Dimitropoulos, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histogram-based traffic anomaly detection</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2009-06</date><risdate>2009</risdate><volume>6</volume><issue>2</issue><spage>110</spage><epage>121</epage><pages>110-121</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Identifying network anomalies is essential in enterprise and provider networks for diagnosing events, like attacks or failures, that severely impact performance, security, and Service Level Agreements (SLAs). Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing different packet header features, like IP addresses and port numbers. In this work, we describe a new approach to feature-based anomaly detection that constructs histograms of different traffic features, models histogram patterns, and identifies deviations from the created models. We assess the strengths and weaknesses of many design options, like the utility of different features, the construction of feature histograms, the modeling and clustering algorithms, and the detection of deviations. Compared to previous feature-based anomaly detection approaches, our work differs by constructing detailed histogram models, rather than using coarse entropy-based distribution approximations. We evaluate histogram-based anomaly detection and compare it to previous approaches using collected network traffic traces. Our results demonstrate the effectiveness of our technique in identifying a wide range of anomalies. The assessed technical details are generic and, therefore, we expect that the derived insights will be useful for similar future research efforts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2009.090604</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2009-06, Vol.6 (2), p.110-121 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_857427107 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Anomalies Clustering algorithms clustering methods Computer network security Computer vision Construction Deviation Event detection Extraterrestrial measurements Histograms Intrusion detection Mathematical models Monitoring Network security Networks Telecommunication traffic Traffic control Traffic engineering Traffic flow |
title | Histogram-based traffic anomaly detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histogram-based%20traffic%20anomaly%20detection&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Kind,%20A.&rft.date=2009-06&rft.volume=6&rft.issue=2&rft.spage=110&rft.epage=121&rft.pages=110-121&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2009.090604&rft_dat=%3Cproquest_RIE%3E2294844071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857427107&rft_id=info:pmid/&rft_ieee_id=5374831&rfr_iscdi=true |