Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map
A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divid...
Gespeichert in:
Veröffentlicht in: | Mathematical Problems in Engineering 2008-01, Vol.2008 (1), p.1179-1187 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1187 |
---|---|
container_issue | 1 |
container_start_page | 1179 |
container_title | Mathematical Problems in Engineering |
container_volume | 2008 |
creator | Cheng, Wushan |
description | A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN) to be trained; this network is used to solve the prediction problem of the burning through point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction. |
doi_str_mv | 10.1155/2008/783278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_857148984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_200812_201702150007_201702150007_1179_1187</airiti_id><sourcerecordid>2293293751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-dce72a39ecdcf394afcbd33d22b16cc7aa4132a28a80c35bda084f9028562a953</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhSNUpFLg1D9gcWyV4rHj2DnCClokWvYAErdo1nZ2vQp2anuh_Pt6m0qop15m5knfzJPeVNVHoF8AhDhnlKpzqTiT6qA6AtHyWkAj35WZsqYGxh_fVx9S2lLKQIA6qrY3PttxdGvrM1kEn2MYSRhI3tgin6bR_iL3Vm98GMP6lSxj0DYlconJGhI8uTA4ZfdsyRJzttGTxbhLZXB-TdAbcm0x76Il33E6qQ4HHJM9_duPq4frq_vFt_r27uvN4uK2Rt5Cro22kiHvrDZ64F2Dg14Zzg1jK2i1logNcIZMoaKai5VBqpqho0yJlmEn-HF1Nt-dYvi5syn327CLvlj2SkhoVKeaAn2eIR1DStEO_RTdE8bXHmi_z7LfZ9nPWRb600xvnDf44v4D_5hhdNFl9-a-ZBRaAJAl_T8bsG9Fll9QSuW_onBdKUry315TiOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857148984</pqid></control><display><type>article</type><title>Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cheng, Wushan</creator><contributor>Cattani, Carlo</contributor><creatorcontrib>Cheng, Wushan ; Cattani, Carlo</creatorcontrib><description>A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN) to be trained; this network is used to solve the prediction problem of the burning through point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2008/783278</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Cluster analysis ; Clustering ; Engineering ; Feature extraction ; Feature maps ; Fuzzy control ; Fuzzy logic ; Genetic algorithms ; Learning vector quantization networks ; Linguistics ; Neural networks ; Sintering ; Studies</subject><ispartof>Mathematical Problems in Engineering, 2008-01, Vol.2008 (1), p.1179-1187</ispartof><rights>Copyright © 2008</rights><rights>Copyright © 2008 Wushan Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a361t-dce72a39ecdcf394afcbd33d22b16cc7aa4132a28a80c35bda084f9028562a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Cattani, Carlo</contributor><creatorcontrib>Cheng, Wushan</creatorcontrib><title>Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map</title><title>Mathematical Problems in Engineering</title><description>A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN) to be trained; this network is used to solve the prediction problem of the burning through point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Learning vector quantization networks</subject><subject>Linguistics</subject><subject>Neural networks</subject><subject>Sintering</subject><subject>Studies</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUFP3DAQhSNUpFLg1D9gcWyV4rHj2DnCClokWvYAErdo1nZ2vQp2anuh_Pt6m0qop15m5knfzJPeVNVHoF8AhDhnlKpzqTiT6qA6AtHyWkAj35WZsqYGxh_fVx9S2lLKQIA6qrY3PttxdGvrM1kEn2MYSRhI3tgin6bR_iL3Vm98GMP6lSxj0DYlconJGhI8uTA4ZfdsyRJzttGTxbhLZXB-TdAbcm0x76Il33E6qQ4HHJM9_duPq4frq_vFt_r27uvN4uK2Rt5Cro22kiHvrDZ64F2Dg14Zzg1jK2i1logNcIZMoaKai5VBqpqho0yJlmEn-HF1Nt-dYvi5syn327CLvlj2SkhoVKeaAn2eIR1DStEO_RTdE8bXHmi_z7LfZ9nPWRb600xvnDf44v4D_5hhdNFl9-a-ZBRaAJAl_T8bsG9Fll9QSuW_onBdKUry315TiOU</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Cheng, Wushan</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080101</creationdate><title>Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map</title><author>Cheng, Wushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-dce72a39ecdcf394afcbd33d22b16cc7aa4132a28a80c35bda084f9028562a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Learning vector quantization networks</topic><topic>Linguistics</topic><topic>Neural networks</topic><topic>Sintering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Wushan</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Wushan</au><au>Cattani, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><spage>1179</spage><epage>1187</epage><pages>1179-1187</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A kind of fuzzy neural networks (FNNs) based on adaptive pattern clustering and feature map (APCFM) is proposed to improve the property of the large delay and time varying of the sintering process. By using the density clustering and learning vector quantization (LVQ), the sintering process is divided automatically into subclasses which have similar clustering center and labeled fitting number. Then these labeled subclass samples are taken into fuzzy neural network (FNN) to be trained; this network is used to solve the prediction problem of the burning through point (BTP). Using the 707 groups of actual training process data and the FNN to train APCFM algorithm, experiments prove that the system has stronger robustness and wide generality in clustering analysis and feature extraction.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2008/783278</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical Problems in Engineering, 2008-01, Vol.2008 (1), p.1179-1187 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_857148984 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adaptive control Algorithms Artificial neural networks Cluster analysis Clustering Engineering Feature extraction Feature maps Fuzzy control Fuzzy logic Genetic algorithms Learning vector quantization networks Linguistics Neural networks Sintering Studies |
title | Intelligent Control of the Complex Technology Process Based on Adaptive Pattern Clustering and Feature Map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Control%20of%20the%20Complex%20Technology%20Process%20Based%20on%20Adaptive%20Pattern%20Clustering%20and%20Feature%20Map&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Cheng,%20Wushan&rft.date=2008-01-01&rft.volume=2008&rft.issue=1&rft.spage=1179&rft.epage=1187&rft.pages=1179-1187&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2008/783278&rft_dat=%3Cproquest_cross%3E2293293751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857148984&rft_id=info:pmid/&rft_airiti_id=P20161117002_200812_201702150007_201702150007_1179_1187&rfr_iscdi=true |