Topological complexity of collision-free motion planning on surfaces
The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2011-03, Vol.147 (2), p.649-660 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 660 |
---|---|
container_issue | 2 |
container_start_page | 649 |
container_title | Compositio mathematica |
container_volume | 147 |
creator | Cohen, Daniel C. Farber, Michael |
description | The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures. |
doi_str_mv | 10.1112/S0010437X10005038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_857041203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X10005038</cupid><sourcerecordid>2292735701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3oL36OwrmRylPqHgwQrewma7W7Yk2bibgP33bmnBg3iab_gew3yEXFO4pZSyu3cACoKXnxQAJHA8ITMqS8gliuKUzPZ0vufPyUWM2yRiyHBGHlZ-8K3fOK3aTPtuaM23G3eZt2lrWxed73MbjMk6PyacDa3qe9dvsoTjFKzSJl6SM6vaaK6Oc04-nh5Xi5d8-fb8urhf5prLaswLkGu2rijKRkhlkGmAhhWoGuCilA1q1BW1vJJFZRFNwY1SpWigBIEIBZ-Tm0PuEPzXZOJYb_0U-nSyxvSroAx4EtGDSAcfYzC2HoLrVNjVFOp9V_WfrpKHHz2qa4Jbb8xv8v-uH-iyap8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857041203</pqid></control><display><type>article</type><title>Topological complexity of collision-free motion planning on surfaces</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Cohen, Daniel C. ; Farber, Michael</creator><creatorcontrib>Cohen, Daniel C. ; Farber, Michael</creatorcontrib><description>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X10005038</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Mathematics ; Theorems ; Topological manifolds</subject><ispartof>Compositio mathematica, 2011-03, Vol.147 (2), p.649-660</ispartof><rights>Copyright © Foundation Compositio Mathematica 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</citedby><cites>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X10005038/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><title>Topological complexity of collision-free motion planning on surfaces</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</description><subject>Mathematics</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3oL36OwrmRylPqHgwQrewma7W7Yk2bibgP33bmnBg3iab_gew3yEXFO4pZSyu3cACoKXnxQAJHA8ITMqS8gliuKUzPZ0vufPyUWM2yRiyHBGHlZ-8K3fOK3aTPtuaM23G3eZt2lrWxed73MbjMk6PyacDa3qe9dvsoTjFKzSJl6SM6vaaK6Oc04-nh5Xi5d8-fb8urhf5prLaswLkGu2rijKRkhlkGmAhhWoGuCilA1q1BW1vJJFZRFNwY1SpWigBIEIBZ-Tm0PuEPzXZOJYb_0U-nSyxvSroAx4EtGDSAcfYzC2HoLrVNjVFOp9V_WfrpKHHz2qa4Jbb8xv8v-uH-iyap8</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Cohen, Daniel C.</creator><creator>Farber, Michael</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201103</creationdate><title>Topological complexity of collision-free motion planning on surfaces</title><author>Cohen, Daniel C. ; Farber, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Daniel C.</au><au>Farber, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological complexity of collision-free motion planning on surfaces</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2011-03</date><risdate>2011</risdate><volume>147</volume><issue>2</issue><spage>649</spage><epage>660</epage><pages>649-660</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X10005038</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2011-03, Vol.147 (2), p.649-660 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_857041203 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Mathematics Theorems Topological manifolds |
title | Topological complexity of collision-free motion planning on surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20complexity%20of%20collision-free%20motion%20planning%20on%20surfaces&rft.jtitle=Compositio%20mathematica&rft.au=Cohen,%20Daniel%20C.&rft.date=2011-03&rft.volume=147&rft.issue=2&rft.spage=649&rft.epage=660&rft.pages=649-660&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X10005038&rft_dat=%3Cproquest_cross%3E2292735701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857041203&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X10005038&rfr_iscdi=true |