Topological complexity of collision-free motion planning on surfaces

The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2011-03, Vol.147 (2), p.649-660
Hauptverfasser: Cohen, Daniel C., Farber, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 660
container_issue 2
container_start_page 649
container_title Compositio mathematica
container_volume 147
creator Cohen, Daniel C.
Farber, Michael
description The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.
doi_str_mv 10.1112/S0010437X10005038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_857041203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X10005038</cupid><sourcerecordid>2292735701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3oL36OwrmRylPqHgwQrewma7W7Yk2bibgP33bmnBg3iab_gew3yEXFO4pZSyu3cACoKXnxQAJHA8ITMqS8gliuKUzPZ0vufPyUWM2yRiyHBGHlZ-8K3fOK3aTPtuaM23G3eZt2lrWxed73MbjMk6PyacDa3qe9dvsoTjFKzSJl6SM6vaaK6Oc04-nh5Xi5d8-fb8urhf5prLaswLkGu2rijKRkhlkGmAhhWoGuCilA1q1BW1vJJFZRFNwY1SpWigBIEIBZ-Tm0PuEPzXZOJYb_0U-nSyxvSroAx4EtGDSAcfYzC2HoLrVNjVFOp9V_WfrpKHHz2qa4Jbb8xv8v-uH-iyap8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857041203</pqid></control><display><type>article</type><title>Topological complexity of collision-free motion planning on surfaces</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Cohen, Daniel C. ; Farber, Michael</creator><creatorcontrib>Cohen, Daniel C. ; Farber, Michael</creatorcontrib><description>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X10005038</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Mathematics ; Theorems ; Topological manifolds</subject><ispartof>Compositio mathematica, 2011-03, Vol.147 (2), p.649-660</ispartof><rights>Copyright © Foundation Compositio Mathematica 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</citedby><cites>FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X10005038/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><title>Topological complexity of collision-free motion planning on surfaces</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</description><subject>Mathematics</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3oL36OwrmRylPqHgwQrewma7W7Yk2bibgP33bmnBg3iab_gew3yEXFO4pZSyu3cACoKXnxQAJHA8ITMqS8gliuKUzPZ0vufPyUWM2yRiyHBGHlZ-8K3fOK3aTPtuaM23G3eZt2lrWxed73MbjMk6PyacDa3qe9dvsoTjFKzSJl6SM6vaaK6Oc04-nh5Xi5d8-fb8urhf5prLaswLkGu2rijKRkhlkGmAhhWoGuCilA1q1BW1vJJFZRFNwY1SpWigBIEIBZ-Tm0PuEPzXZOJYb_0U-nSyxvSroAx4EtGDSAcfYzC2HoLrVNjVFOp9V_WfrpKHHz2qa4Jbb8xv8v-uH-iyap8</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Cohen, Daniel C.</creator><creator>Farber, Michael</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201103</creationdate><title>Topological complexity of collision-free motion planning on surfaces</title><author>Cohen, Daniel C. ; Farber, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-605d2d9185b45ae82c00b268ab03475b8c8c91f39569f88e63eaa74b070488063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Daniel C.</au><au>Farber, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological complexity of collision-free motion planning on surfaces</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2011-03</date><risdate>2011</risdate><volume>147</volume><issue>2</issue><spage>649</spage><epage>660</epage><pages>649-660</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>The topological complexity $\mathsf {TC}(X)$ is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant $\mathsf {TC}(X)$ measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X10005038</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2011-03, Vol.147 (2), p.649-660
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_857041203
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects Mathematics
Theorems
Topological manifolds
title Topological complexity of collision-free motion planning on surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20complexity%20of%20collision-free%20motion%20planning%20on%20surfaces&rft.jtitle=Compositio%20mathematica&rft.au=Cohen,%20Daniel%20C.&rft.date=2011-03&rft.volume=147&rft.issue=2&rft.spage=649&rft.epage=660&rft.pages=649-660&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X10005038&rft_dat=%3Cproquest_cross%3E2292735701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857041203&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X10005038&rfr_iscdi=true