Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces

Matthews (1994) introduced a new distance p on a nonempty set X , which is called partial metric. If (X,p) is a partial metric space, then p(x,x) may not be zero for x∈X . In the present paper, we give some fixed point results on these interesting spaces.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fixed point theory and algorithms for sciences and engineering 2011-01
Hauptverfasser: Altun, Ishak, Erduran, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Fixed point theory and algorithms for sciences and engineering
container_volume
creator Altun, Ishak
Erduran, Ali
description Matthews (1994) introduced a new distance p on a nonempty set X , which is called partial metric. If (X,p) is a partial metric space, then p(x,x) may not be zero for x∈X . In the present paper, we give some fixed point results on these interesting spaces.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_856980751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2292570141</sourcerecordid><originalsourceid>FETCH-proquest_journals_8569807513</originalsourceid><addsrcrecordid>eNqNjbEKwjAUAIMgWLT_8HAvxNSYOheLS6Fg9xLqq6bUvJik4OfbwQ9wuuEObsUSoXKeyaMQG5aGMHLOhTzkQsmElZX54B0aMjZC-0Ty-AowkIeaLEWyCLV2zthHALLQaB-NnqDG6E0PN6d7DDu2HvQUMP1xy_bVpS2vmfP0njHEbqTZ20V1hTydC66W-1_RF1RAOWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856980751</pqid></control><display><type>article</type><title>Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces</title><source>Springer Nature OA Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Altun, Ishak ; Erduran, Ali</creator><creatorcontrib>Altun, Ishak ; Erduran, Ali</creatorcontrib><description>Matthews (1994) introduced a new distance p on a nonempty set X , which is called partial metric. If (X,p) is a partial metric space, then p(x,x) may not be zero for x∈X . In the present paper, we give some fixed point results on these interesting spaces.</description><identifier>EISSN: 2730-5422</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Mathematical models ; Ordinary differential equations ; Studies</subject><ispartof>Fixed point theory and algorithms for sciences and engineering, 2011-01</ispartof><rights>Copyright © 2011 Ishak Altun and Ali Erduran. Ishak Altun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Altun, Ishak</creatorcontrib><creatorcontrib>Erduran, Ali</creatorcontrib><title>Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces</title><title>Fixed point theory and algorithms for sciences and engineering</title><description>Matthews (1994) introduced a new distance p on a nonempty set X , which is called partial metric. If (X,p) is a partial metric space, then p(x,x) may not be zero for x∈X . In the present paper, we give some fixed point results on these interesting spaces.</description><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Studies</subject><issn>2730-5422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjbEKwjAUAIMgWLT_8HAvxNSYOheLS6Fg9xLqq6bUvJik4OfbwQ9wuuEObsUSoXKeyaMQG5aGMHLOhTzkQsmElZX54B0aMjZC-0Ty-AowkIeaLEWyCLV2zthHALLQaB-NnqDG6E0PN6d7DDu2HvQUMP1xy_bVpS2vmfP0njHEbqTZ20V1hTydC66W-1_RF1RAOWY</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Altun, Ishak</creator><creator>Erduran, Ali</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces</title><author>Altun, Ishak ; Erduran, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_8569807513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altun, Ishak</creatorcontrib><creatorcontrib>Erduran, Ali</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altun, Ishak</au><au>Erduran, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces</atitle><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle><date>2011-01-01</date><risdate>2011</risdate><eissn>2730-5422</eissn><abstract>Matthews (1994) introduced a new distance p on a nonempty set X , which is called partial metric. If (X,p) is a partial metric space, then p(x,x) may not be zero for x∈X . In the present paper, we give some fixed point results on these interesting spaces.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2730-5422
ispartof Fixed point theory and algorithms for sciences and engineering, 2011-01
issn 2730-5422
language eng
recordid cdi_proquest_journals_856980751
source Springer Nature OA Free Journals; SpringerLink Journals - AutoHoldings
subjects Mathematical models
Ordinary differential equations
Studies
title Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20Point%20Theorems%20for%20Monotone%20Mappings%20on%20Partial%20Metric%20Spaces&rft.jtitle=Fixed%20point%20theory%20and%20algorithms%20for%20sciences%20and%20engineering&rft.au=Altun,%20Ishak&rft.date=2011-01-01&rft.eissn=2730-5422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2292570141%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856980751&rft_id=info:pmid/&rfr_iscdi=true