New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles
Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2009-06, Vol.45 (6), p.2557-2560 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2560 |
---|---|
container_issue | 6 |
container_start_page | 2557 |
container_title | IEEE transactions on magnetics |
container_volume | 45 |
creator | Bae, S. Hong, Y.K. Lee, J.J. Jalli, J. Abo, G.S. Lyle, A. Nam, I.T. Seong, W.M. Kum, J.S. Park, S.H. |
description | Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe 12 O 19 ) and 83.8% pure Y-type (Ba 2 Co 2 Fe 12 O 22 ) precursors to synthesize Z-type by the MCP. As a result, 77.8% pure Co 2 Z hexaferrite particles were obtained. The purities of Co 2 Z hexaferrite particles processed by SGP and CCP were 75.1% and 70.7%, respectively. It was found that purity of Z-phase was controllable by purity of M- and Y-type precursor particles in the MCP. Loss tan delta of sintered MCP Co 2 Z decreased from 0.17 at 50 MHz to 0.068 at 300 MHz, while loss tan delta of sintered SGP and CCP Co 2 Z were 0.12 and 0.09 at 300 MHz. It is found that this loss tan delta is controllable by the purity of Z-phase and sintering process. These results imply that our new process is potentially applicable to synthesis of any other hexaferrites and also cost-effective. |
doi_str_mv | 10.1109/TMAG.2009.2018883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_856918082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4957805</ieee_id><sourcerecordid>34510641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-cfc671f39e158820d1210021d056b59647592c41d75ecb5567943c2c1559e6693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QNwEwddiNHcmySTLWrQV6gOtGzchTe_glLFTkynaf2-GFhcu3CTk5juHew4hh8AuAZi-Gt_3BpcpYzoeoJTKtkgHNIeEMam3SYfFaaK55LtkL4RZfHIBrEN6D_hFX1bz5h2b0tHnetkgrQv6loxXC6Tn15b2a3qL9JFe0CF-2wK9LyPzZH0UVBj2yU5hq4AHm7tLXm9vxv1hMnoc3PV7o8RlSjSJK5zMocg0glAqZVNIgbEUpkzIidCS50KnjsM0F-gmQshc88ylDoTQKKXOuuRs7bvw9ecSQ2M-yuCwquwc62UwSmolJKiWPP2XzNrokkMEj_-As3rp5zGFiVYaFFNphGANOV-H4LEwC19-WL8ywEzbvWm7N233ZtN91JxsjG1wtiq8nbsy_ApT0Fmk2gWO1lyJiL_fXItcMZH9ADd8h4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856918082</pqid></control><display><type>article</type><title>New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles</title><source>IEEE Electronic Library (IEL)</source><creator>Bae, S. ; Hong, Y.K. ; Lee, J.J. ; Jalli, J. ; Abo, G.S. ; Lyle, A. ; Nam, I.T. ; Seong, W.M. ; Kum, J.S. ; Park, S.H.</creator><creatorcontrib>Bae, S. ; Hong, Y.K. ; Lee, J.J. ; Jalli, J. ; Abo, G.S. ; Lyle, A. ; Nam, I.T. ; Seong, W.M. ; Kum, J.S. ; Park, S.H.</creatorcontrib><description>Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe 12 O 19 ) and 83.8% pure Y-type (Ba 2 Co 2 Fe 12 O 22 ) precursors to synthesize Z-type by the MCP. As a result, 77.8% pure Co 2 Z hexaferrite particles were obtained. The purities of Co 2 Z hexaferrite particles processed by SGP and CCP were 75.1% and 70.7%, respectively. It was found that purity of Z-phase was controllable by purity of M- and Y-type precursor particles in the MCP. Loss tan delta of sintered MCP Co 2 Z decreased from 0.17 at 50 MHz to 0.068 at 300 MHz, while loss tan delta of sintered SGP and CCP Co 2 Z were 0.12 and 0.09 at 300 MHz. It is found that this loss tan delta is controllable by the purity of Z-phase and sintering process. These results imply that our new process is potentially applicable to synthesis of any other hexaferrites and also cost-effective.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2009.2018883</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Barium ; Barium ferrite ; Calcination ; Ceramics ; Cross-disciplinary physics: materials science; rheology ; Deltas ; Exact sciences and technology ; Ferrites ; hbox{Co}_{2}\hbox{Z} ; hexaferrite ; Iron ; Magnetic materials ; Magnetic properties ; Magnetic resonance ; Magnetism ; Materials science ; Microwave devices ; Other topics in materials science ; Physics ; Precursors ; Purity ; Resonant frequency ; Sintering ; Stability ; Yttrium ; Z-type</subject><ispartof>IEEE transactions on magnetics, 2009-06, Vol.45 (6), p.2557-2560</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-cfc671f39e158820d1210021d056b59647592c41d75ecb5567943c2c1559e6693</citedby><cites>FETCH-LOGICAL-c385t-cfc671f39e158820d1210021d056b59647592c41d75ecb5567943c2c1559e6693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4957805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4957805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21938331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, S.</creatorcontrib><creatorcontrib>Hong, Y.K.</creatorcontrib><creatorcontrib>Lee, J.J.</creatorcontrib><creatorcontrib>Jalli, J.</creatorcontrib><creatorcontrib>Abo, G.S.</creatorcontrib><creatorcontrib>Lyle, A.</creatorcontrib><creatorcontrib>Nam, I.T.</creatorcontrib><creatorcontrib>Seong, W.M.</creatorcontrib><creatorcontrib>Kum, J.S.</creatorcontrib><creatorcontrib>Park, S.H.</creatorcontrib><title>New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe 12 O 19 ) and 83.8% pure Y-type (Ba 2 Co 2 Fe 12 O 22 ) precursors to synthesize Z-type by the MCP. As a result, 77.8% pure Co 2 Z hexaferrite particles were obtained. The purities of Co 2 Z hexaferrite particles processed by SGP and CCP were 75.1% and 70.7%, respectively. It was found that purity of Z-phase was controllable by purity of M- and Y-type precursor particles in the MCP. Loss tan delta of sintered MCP Co 2 Z decreased from 0.17 at 50 MHz to 0.068 at 300 MHz, while loss tan delta of sintered SGP and CCP Co 2 Z were 0.12 and 0.09 at 300 MHz. It is found that this loss tan delta is controllable by the purity of Z-phase and sintering process. These results imply that our new process is potentially applicable to synthesis of any other hexaferrites and also cost-effective.</description><subject>Barium</subject><subject>Barium ferrite</subject><subject>Calcination</subject><subject>Ceramics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deltas</subject><subject>Exact sciences and technology</subject><subject>Ferrites</subject><subject>hbox{Co}_{2}\hbox{Z}</subject><subject>hexaferrite</subject><subject>Iron</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Microwave devices</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Precursors</subject><subject>Purity</subject><subject>Resonant frequency</subject><subject>Sintering</subject><subject>Stability</subject><subject>Yttrium</subject><subject>Z-type</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_QNwEwddiNHcmySTLWrQV6gOtGzchTe_glLFTkynaf2-GFhcu3CTk5juHew4hh8AuAZi-Gt_3BpcpYzoeoJTKtkgHNIeEMam3SYfFaaK55LtkL4RZfHIBrEN6D_hFX1bz5h2b0tHnetkgrQv6loxXC6Tn15b2a3qL9JFe0CF-2wK9LyPzZH0UVBj2yU5hq4AHm7tLXm9vxv1hMnoc3PV7o8RlSjSJK5zMocg0glAqZVNIgbEUpkzIidCS50KnjsM0F-gmQshc88ylDoTQKKXOuuRs7bvw9ecSQ2M-yuCwquwc62UwSmolJKiWPP2XzNrokkMEj_-As3rp5zGFiVYaFFNphGANOV-H4LEwC19-WL8ywEzbvWm7N233ZtN91JxsjG1wtiq8nbsy_ApT0Fmk2gWO1lyJiL_fXItcMZH9ADd8h4E</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Bae, S.</creator><creator>Hong, Y.K.</creator><creator>Lee, J.J.</creator><creator>Jalli, J.</creator><creator>Abo, G.S.</creator><creator>Lyle, A.</creator><creator>Nam, I.T.</creator><creator>Seong, W.M.</creator><creator>Kum, J.S.</creator><creator>Park, S.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7QQ</scope></search><sort><creationdate>20090601</creationdate><title>New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles</title><author>Bae, S. ; Hong, Y.K. ; Lee, J.J. ; Jalli, J. ; Abo, G.S. ; Lyle, A. ; Nam, I.T. ; Seong, W.M. ; Kum, J.S. ; Park, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-cfc671f39e158820d1210021d056b59647592c41d75ecb5567943c2c1559e6693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Barium</topic><topic>Barium ferrite</topic><topic>Calcination</topic><topic>Ceramics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deltas</topic><topic>Exact sciences and technology</topic><topic>Ferrites</topic><topic>hbox{Co}_{2}\hbox{Z}</topic><topic>hexaferrite</topic><topic>Iron</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Microwave devices</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Precursors</topic><topic>Purity</topic><topic>Resonant frequency</topic><topic>Sintering</topic><topic>Stability</topic><topic>Yttrium</topic><topic>Z-type</topic><toplevel>online_resources</toplevel><creatorcontrib>Bae, S.</creatorcontrib><creatorcontrib>Hong, Y.K.</creatorcontrib><creatorcontrib>Lee, J.J.</creatorcontrib><creatorcontrib>Jalli, J.</creatorcontrib><creatorcontrib>Abo, G.S.</creatorcontrib><creatorcontrib>Lyle, A.</creatorcontrib><creatorcontrib>Nam, I.T.</creatorcontrib><creatorcontrib>Seong, W.M.</creatorcontrib><creatorcontrib>Kum, J.S.</creatorcontrib><creatorcontrib>Park, S.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Ceramic Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bae, S.</au><au>Hong, Y.K.</au><au>Lee, J.J.</au><au>Jalli, J.</au><au>Abo, G.S.</au><au>Lyle, A.</au><au>Nam, I.T.</au><au>Seong, W.M.</au><au>Kum, J.S.</au><au>Park, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>45</volume><issue>6</issue><spage>2557</spage><epage>2560</epage><pages>2557-2560</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe 12 O 19 ) and 83.8% pure Y-type (Ba 2 Co 2 Fe 12 O 22 ) precursors to synthesize Z-type by the MCP. As a result, 77.8% pure Co 2 Z hexaferrite particles were obtained. The purities of Co 2 Z hexaferrite particles processed by SGP and CCP were 75.1% and 70.7%, respectively. It was found that purity of Z-phase was controllable by purity of M- and Y-type precursor particles in the MCP. Loss tan delta of sintered MCP Co 2 Z decreased from 0.17 at 50 MHz to 0.068 at 300 MHz, while loss tan delta of sintered SGP and CCP Co 2 Z were 0.12 and 0.09 at 300 MHz. It is found that this loss tan delta is controllable by the purity of Z-phase and sintering process. These results imply that our new process is potentially applicable to synthesis of any other hexaferrites and also cost-effective.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2009.2018883</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2009-06, Vol.45 (6), p.2557-2560 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_856918082 |
source | IEEE Electronic Library (IEL) |
subjects | Barium Barium ferrite Calcination Ceramics Cross-disciplinary physics: materials science rheology Deltas Exact sciences and technology Ferrites hbox{Co}_{2}\hbox{Z} hexaferrite Iron Magnetic materials Magnetic properties Magnetic resonance Magnetism Materials science Microwave devices Other topics in materials science Physics Precursors Purity Resonant frequency Sintering Stability Yttrium Z-type |
title | New Synthetic Route of Z-Type (Ba Co Fe O ) Hexaferrite Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Synthetic%20Route%20of%20Z-Type%20(Ba%20Co%20Fe%20O%20)%20Hexaferrite%20Particles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Bae,%20S.&rft.date=2009-06-01&rft.volume=45&rft.issue=6&rft.spage=2557&rft.epage=2560&rft.pages=2557-2560&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2009.2018883&rft_dat=%3Cproquest_RIE%3E34510641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856918082&rft_id=info:pmid/&rft_ieee_id=4957805&rfr_iscdi=true |