Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits

Power has become the primary design constraint for chip designers today. While Moore's law continues to provide additional transistors, power budgets have begun to prohibit those devices from actually being used. To reduce energy consumption, voltage scaling techniques have proved a popular tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2010-02, Vol.98 (2), p.253-266
Hauptverfasser: Dreslinski, Ronald G., Wieckowski, Michael, Blaauw, David, Sylvester, Dennis, Mudge, Trevor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 253
container_title Proceedings of the IEEE
container_volume 98
creator Dreslinski, Ronald G.
Wieckowski, Michael
Blaauw, David
Sylvester, Dennis
Mudge, Trevor
description Power has become the primary design constraint for chip designers today. While Moore's law continues to provide additional transistors, power budgets have begun to prohibit those devices from actually being used. To reduce energy consumption, voltage scaling techniques have proved a popular technique with subthreshold design representing the endpoint of voltage scaling. Although it is extremely energy efficient, subthreshold design has been relegated to niche markets due to its major performance penalties. This paper defines and explores near-threshold computing (NTC), a design space where the supply voltage is approximately equal to the threshold voltage of the transistors. This region retains much of the energy savings of subthreshold operation with more favorable performance and variability characteristics. This makes it applicable to a broad range of power-constrained computing segments from sensors to high performance servers. This paper explores the barriers to the widespread adoption of NTC and describes current work aimed at overcoming these obstacles.
doi_str_mv 10.1109/JPROC.2009.2034764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_856613634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395763</ieee_id><sourcerecordid>818832917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-aab6fe65c5e05f0737586ae21f333e06c8167c9b580320f6be670eb60376d023</originalsourceid><addsrcrecordid>eNqFkU9PGzEQxa2qSE2BL9BeVr3Qy8LYXs_a3Koo5Y_SglCu1coxs4nRZp3au0J8exyCOPRQLjNz-L03M3qMfeFwyjmYs-vbu5vpqQAwuciqxuoDm3CldCmEwo9sAsB1aQQ3n9jnlB4AQCqUE_bnN9lYLtaR0jp098U0bLbj4PvVeXFHrrN-k-fiVwiRTlIxt49FZsO4WheznuLqqZi1rXee-qG46gdaRTtQdvHRjX5IR-ygtV2i49d-yBY_Z4vpZTm_ubia_piXrjJmKK1dYkuonCJQLdSyVhotCd5KKQnQaY61M0ulQQpocUlYAy0RZI33IOQhO9nbbmP4O1Iamo1PjrrO9hTG1GiutRSG15n8_l8y7-GK66qC91HgBlW-tMrot3_QhzDGPn_caIXIJcodJPaQiyGlSG2zjX5j41N2anYhNi8hNrsQm9cQs-jrXuSJ6E2gpFE1SvkMof2Wnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856613634</pqid></control><display><type>article</type><title>Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits</title><source>IEEE Xplore (Online service)</source><creator>Dreslinski, Ronald G. ; Wieckowski, Michael ; Blaauw, David ; Sylvester, Dennis ; Mudge, Trevor</creator><creatorcontrib>Dreslinski, Ronald G. ; Wieckowski, Michael ; Blaauw, David ; Sylvester, Dennis ; Mudge, Trevor</creatorcontrib><description>Power has become the primary design constraint for chip designers today. While Moore's law continues to provide additional transistors, power budgets have begun to prohibit those devices from actually being used. To reduce energy consumption, voltage scaling techniques have proved a popular technique with subthreshold design representing the endpoint of voltage scaling. Although it is extremely energy efficient, subthreshold design has been relegated to niche markets due to its major performance penalties. This paper defines and explores near-threshold computing (NTC), a design space where the supply voltage is approximately equal to the threshold voltage of the transistors. This region retains much of the energy savings of subthreshold operation with more favorable performance and variability characteristics. This makes it applicable to a broad range of power-constrained computing segments from sensors to high performance servers. This paper explores the barriers to the widespread adoption of NTC and describes current work aimed at overcoming these obstacles.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2034764</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clocks ; CMOS integrated circuits ; CMOS technology ; Computation ; Computer architecture ; Design ; Design optimization ; Electric potential ; energy conservation ; Energy consumption ; Energy efficiency ; Fabrication ; High performance computing ; Integrated circuits ; Law ; Moore's Law ; Obstacles ; parallel processing ; Semiconductor devices ; Threshold voltage ; Transistors ; VLSI ; Voltage</subject><ispartof>Proceedings of the IEEE, 2010-02, Vol.98 (2), p.253-266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-aab6fe65c5e05f0737586ae21f333e06c8167c9b580320f6be670eb60376d023</citedby><cites>FETCH-LOGICAL-c499t-aab6fe65c5e05f0737586ae21f333e06c8167c9b580320f6be670eb60376d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dreslinski, Ronald G.</creatorcontrib><creatorcontrib>Wieckowski, Michael</creatorcontrib><creatorcontrib>Blaauw, David</creatorcontrib><creatorcontrib>Sylvester, Dennis</creatorcontrib><creatorcontrib>Mudge, Trevor</creatorcontrib><title>Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Power has become the primary design constraint for chip designers today. While Moore's law continues to provide additional transistors, power budgets have begun to prohibit those devices from actually being used. To reduce energy consumption, voltage scaling techniques have proved a popular technique with subthreshold design representing the endpoint of voltage scaling. Although it is extremely energy efficient, subthreshold design has been relegated to niche markets due to its major performance penalties. This paper defines and explores near-threshold computing (NTC), a design space where the supply voltage is approximately equal to the threshold voltage of the transistors. This region retains much of the energy savings of subthreshold operation with more favorable performance and variability characteristics. This makes it applicable to a broad range of power-constrained computing segments from sensors to high performance servers. This paper explores the barriers to the widespread adoption of NTC and describes current work aimed at overcoming these obstacles.</description><subject>Clocks</subject><subject>CMOS integrated circuits</subject><subject>CMOS technology</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electric potential</subject><subject>energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Fabrication</subject><subject>High performance computing</subject><subject>Integrated circuits</subject><subject>Law</subject><subject>Moore's Law</subject><subject>Obstacles</subject><subject>parallel processing</subject><subject>Semiconductor devices</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>VLSI</subject><subject>Voltage</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9PGzEQxa2qSE2BL9BeVr3Qy8LYXs_a3Koo5Y_SglCu1coxs4nRZp3au0J8exyCOPRQLjNz-L03M3qMfeFwyjmYs-vbu5vpqQAwuciqxuoDm3CldCmEwo9sAsB1aQQ3n9jnlB4AQCqUE_bnN9lYLtaR0jp098U0bLbj4PvVeXFHrrN-k-fiVwiRTlIxt49FZsO4WheznuLqqZi1rXee-qG46gdaRTtQdvHRjX5IR-ygtV2i49d-yBY_Z4vpZTm_ubia_piXrjJmKK1dYkuonCJQLdSyVhotCd5KKQnQaY61M0ulQQpocUlYAy0RZI33IOQhO9nbbmP4O1Iamo1PjrrO9hTG1GiutRSG15n8_l8y7-GK66qC91HgBlW-tMrot3_QhzDGPn_caIXIJcodJPaQiyGlSG2zjX5j41N2anYhNi8hNrsQm9cQs-jrXuSJ6E2gpFE1SvkMof2Wnw</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Dreslinski, Ronald G.</creator><creator>Wieckowski, Michael</creator><creator>Blaauw, David</creator><creator>Sylvester, Dennis</creator><creator>Mudge, Trevor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100201</creationdate><title>Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits</title><author>Dreslinski, Ronald G. ; Wieckowski, Michael ; Blaauw, David ; Sylvester, Dennis ; Mudge, Trevor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-aab6fe65c5e05f0737586ae21f333e06c8167c9b580320f6be670eb60376d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Clocks</topic><topic>CMOS integrated circuits</topic><topic>CMOS technology</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electric potential</topic><topic>energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Fabrication</topic><topic>High performance computing</topic><topic>Integrated circuits</topic><topic>Law</topic><topic>Moore's Law</topic><topic>Obstacles</topic><topic>parallel processing</topic><topic>Semiconductor devices</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>VLSI</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreslinski, Ronald G.</creatorcontrib><creatorcontrib>Wieckowski, Michael</creatorcontrib><creatorcontrib>Blaauw, David</creatorcontrib><creatorcontrib>Sylvester, Dennis</creatorcontrib><creatorcontrib>Mudge, Trevor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dreslinski, Ronald G.</au><au>Wieckowski, Michael</au><au>Blaauw, David</au><au>Sylvester, Dennis</au><au>Mudge, Trevor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>98</volume><issue>2</issue><spage>253</spage><epage>266</epage><pages>253-266</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Power has become the primary design constraint for chip designers today. While Moore's law continues to provide additional transistors, power budgets have begun to prohibit those devices from actually being used. To reduce energy consumption, voltage scaling techniques have proved a popular technique with subthreshold design representing the endpoint of voltage scaling. Although it is extremely energy efficient, subthreshold design has been relegated to niche markets due to its major performance penalties. This paper defines and explores near-threshold computing (NTC), a design space where the supply voltage is approximately equal to the threshold voltage of the transistors. This region retains much of the energy savings of subthreshold operation with more favorable performance and variability characteristics. This makes it applicable to a broad range of power-constrained computing segments from sensors to high performance servers. This paper explores the barriers to the widespread adoption of NTC and describes current work aimed at overcoming these obstacles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2034764</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2010-02, Vol.98 (2), p.253-266
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_journals_856613634
source IEEE Xplore (Online service)
subjects Clocks
CMOS integrated circuits
CMOS technology
Computation
Computer architecture
Design
Design optimization
Electric potential
energy conservation
Energy consumption
Energy efficiency
Fabrication
High performance computing
Integrated circuits
Law
Moore's Law
Obstacles
parallel processing
Semiconductor devices
Threshold voltage
Transistors
VLSI
Voltage
title Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Threshold%20Computing:%20Reclaiming%20Moore's%20Law%20Through%20Energy%20Efficient%20Integrated%20Circuits&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Dreslinski,%20Ronald%20G.&rft.date=2010-02-01&rft.volume=98&rft.issue=2&rft.spage=253&rft.epage=266&rft.pages=253-266&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2034764&rft_dat=%3Cproquest_RIE%3E818832917%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856613634&rft_id=info:pmid/&rft_ieee_id=5395763&rfr_iscdi=true