A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation

This brief proposes a new transform-domain (TD) regularized M-estimation (TD-R-ME) algorithm for a robust linear estimation in an impulsive noise environment and develops an efficient QR -decomposition-based algorithm for recursive implementation. By formulating the robust regularized linear estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2011-02, Vol.58 (2), p.120-124
Hauptverfasser: Chan, S C, Zhang, Z G, Chu, Y J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 2
container_start_page 120
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 58
creator Chan, S C
Zhang, Z G
Chu, Y J
description This brief proposes a new transform-domain (TD) regularized M-estimation (TD-R-ME) algorithm for a robust linear estimation in an impulsive noise environment and develops an efficient QR -decomposition-based algorithm for recursive implementation. By formulating the robust regularized linear estimation in transformed regression coefficients, the proposed TD-R-ME algorithm was found to offer better estimation accuracy than direct application of regularization techniques to estimate system coefficients when they are correlated. Furthermore, a QR -based algorithm and an effective adaptive method for selecting regularization parameters are developed for recursive implementation of the TD-R-ME algorithm. Simulation results show that the proposed TD regularized QR recursive least M-estimate (TD-R-QRRLM) algorithm offers improved performance over its least squares counterpart in an impulsive noise environment. Moreover, a TD smoothly clipped absolute deviation R-QRRLM was found to give a better steady-state excess mean square error than other QRRLM-related methods when regression coefficients are correlated.
doi_str_mv 10.1109/TCSII.2011.2106314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_853866036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5719161</ieee_id><sourcerecordid>1671246456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-250e1022a928565bc7183ccb14f1f3a82d60d0bbb201d4b5d07a1817e6e536e53</originalsourceid><addsrcrecordid>eNpdkEtPwzAQhCMEEuXxB-BiceKS4rVjOzlW5VWpgATlbDnJBlwlMdgJCH49Ca04cFjtHL5Z7UwUnQCdAtDsYjV_WiymjAJMGVDJIdmJJiBEGnOVwe6okyxWKlH70UEIa0pZRjmbRNWM3OMnWXnThsr5Jr50jbEtecSXvjbefmM56KL3wX4gWaIJHbmLr0JnG9MhmdUvztvutSGDmRjy6PJ-IJa2RePJFrOuPYr2KlMHPN7uw-j5-mo1v42XDzeL-WwZF5ypLmaCIlDGTMZSIUVeKEh5UeSQVFBxk7JS0pLmeT4kLZNclFQZSEGhRMHHOYzON3ffvHvvMXS6saHAujYtuj5okApYIhMhB_TsH7p2vW-H73QqeCol5SPENlDhXQgeK_3mh0j-SwPVY_P6t3k9Nq-3zQ-m043JIuKfQSjIQAL_AUOBfok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853866036</pqid></control><display><type>article</type><title>A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, S C ; Zhang, Z G ; Chu, Y J</creator><creatorcontrib>Chan, S C ; Zhang, Z G ; Chu, Y J</creatorcontrib><description>This brief proposes a new transform-domain (TD) regularized M-estimation (TD-R-ME) algorithm for a robust linear estimation in an impulsive noise environment and develops an efficient QR -decomposition-based algorithm for recursive implementation. By formulating the robust regularized linear estimation in transformed regression coefficients, the proposed TD-R-ME algorithm was found to offer better estimation accuracy than direct application of regularization techniques to estimate system coefficients when they are correlated. Furthermore, a QR -based algorithm and an effective adaptive method for selecting regularization parameters are developed for recursive implementation of the TD-R-ME algorithm. Simulation results show that the proposed TD regularized QR recursive least M-estimate (TD-R-QRRLM) algorithm offers improved performance over its least squares counterpart in an impulsive noise environment. Moreover, a TD smoothly clipped absolute deviation R-QRRLM was found to give a better steady-state excess mean square error than other QRRLM-related methods when regression coefficients are correlated.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2011.2106314</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Complexity theory ; Correlation ; Deviation ; Estimation ; Least squares method ; Mean square errors ; Noise ; QR decomposition (QRD) ; Recursive ; recursive linear estimation and filtering ; Regression coefficients ; Regularization ; Robustness ; Signal processing algorithms ; Simulation ; smoothly clipped absolute deviation (SCAD) ; Studies ; system identification ; transformed M-estimation (ME)</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2011-02, Vol.58 (2), p.120-124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-250e1022a928565bc7183ccb14f1f3a82d60d0bbb201d4b5d07a1817e6e536e53</citedby><cites>FETCH-LOGICAL-c327t-250e1022a928565bc7183ccb14f1f3a82d60d0bbb201d4b5d07a1817e6e536e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5719161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5719161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, S C</creatorcontrib><creatorcontrib>Zhang, Z G</creatorcontrib><creatorcontrib>Chu, Y J</creatorcontrib><title>A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief proposes a new transform-domain (TD) regularized M-estimation (TD-R-ME) algorithm for a robust linear estimation in an impulsive noise environment and develops an efficient QR -decomposition-based algorithm for recursive implementation. By formulating the robust regularized linear estimation in transformed regression coefficients, the proposed TD-R-ME algorithm was found to offer better estimation accuracy than direct application of regularization techniques to estimate system coefficients when they are correlated. Furthermore, a QR -based algorithm and an effective adaptive method for selecting regularization parameters are developed for recursive implementation of the TD-R-ME algorithm. Simulation results show that the proposed TD regularized QR recursive least M-estimate (TD-R-QRRLM) algorithm offers improved performance over its least squares counterpart in an impulsive noise environment. Moreover, a TD smoothly clipped absolute deviation R-QRRLM was found to give a better steady-state excess mean square error than other QRRLM-related methods when regression coefficients are correlated.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Correlation</subject><subject>Deviation</subject><subject>Estimation</subject><subject>Least squares method</subject><subject>Mean square errors</subject><subject>Noise</subject><subject>QR decomposition (QRD)</subject><subject>Recursive</subject><subject>recursive linear estimation and filtering</subject><subject>Regression coefficients</subject><subject>Regularization</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Simulation</subject><subject>smoothly clipped absolute deviation (SCAD)</subject><subject>Studies</subject><subject>system identification</subject><subject>transformed M-estimation (ME)</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPwzAQhCMEEuXxB-BiceKS4rVjOzlW5VWpgATlbDnJBlwlMdgJCH49Ca04cFjtHL5Z7UwUnQCdAtDsYjV_WiymjAJMGVDJIdmJJiBEGnOVwe6okyxWKlH70UEIa0pZRjmbRNWM3OMnWXnThsr5Jr50jbEtecSXvjbefmM56KL3wX4gWaIJHbmLr0JnG9MhmdUvztvutSGDmRjy6PJ-IJa2RePJFrOuPYr2KlMHPN7uw-j5-mo1v42XDzeL-WwZF5ypLmaCIlDGTMZSIUVeKEh5UeSQVFBxk7JS0pLmeT4kLZNclFQZSEGhRMHHOYzON3ffvHvvMXS6saHAujYtuj5okApYIhMhB_TsH7p2vW-H73QqeCol5SPENlDhXQgeK_3mh0j-SwPVY_P6t3k9Nq-3zQ-m043JIuKfQSjIQAL_AUOBfok</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Chan, S C</creator><creator>Zhang, Z G</creator><creator>Chu, Y J</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201102</creationdate><title>A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation</title><author>Chan, S C ; Zhang, Z G ; Chu, Y J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-250e1022a928565bc7183ccb14f1f3a82d60d0bbb201d4b5d07a1817e6e536e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Correlation</topic><topic>Deviation</topic><topic>Estimation</topic><topic>Least squares method</topic><topic>Mean square errors</topic><topic>Noise</topic><topic>QR decomposition (QRD)</topic><topic>Recursive</topic><topic>recursive linear estimation and filtering</topic><topic>Regression coefficients</topic><topic>Regularization</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Simulation</topic><topic>smoothly clipped absolute deviation (SCAD)</topic><topic>Studies</topic><topic>system identification</topic><topic>transformed M-estimation (ME)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, S C</creatorcontrib><creatorcontrib>Zhang, Z G</creatorcontrib><creatorcontrib>Chu, Y J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, S C</au><au>Zhang, Z G</au><au>Chu, Y J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2011-02</date><risdate>2011</risdate><volume>58</volume><issue>2</issue><spage>120</spage><epage>124</epage><pages>120-124</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief proposes a new transform-domain (TD) regularized M-estimation (TD-R-ME) algorithm for a robust linear estimation in an impulsive noise environment and develops an efficient QR -decomposition-based algorithm for recursive implementation. By formulating the robust regularized linear estimation in transformed regression coefficients, the proposed TD-R-ME algorithm was found to offer better estimation accuracy than direct application of regularization techniques to estimate system coefficients when they are correlated. Furthermore, a QR -based algorithm and an effective adaptive method for selecting regularization parameters are developed for recursive implementation of the TD-R-ME algorithm. Simulation results show that the proposed TD regularized QR recursive least M-estimate (TD-R-QRRLM) algorithm offers improved performance over its least squares counterpart in an impulsive noise environment. Moreover, a TD smoothly clipped absolute deviation R-QRRLM was found to give a better steady-state excess mean square error than other QRRLM-related methods when regression coefficients are correlated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2011.2106314</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2011-02, Vol.58 (2), p.120-124
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_853866036
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Complexity theory
Correlation
Deviation
Estimation
Least squares method
Mean square errors
Noise
QR decomposition (QRD)
Recursive
recursive linear estimation and filtering
Regression coefficients
Regularization
Robustness
Signal processing algorithms
Simulation
smoothly clipped absolute deviation (SCAD)
Studies
system identification
transformed M-estimation (ME)
title A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Transform-Domain%20Regularized%20Recursive%20Least%20M-Estimate%20Algorithm%20for%20a%20Robust%20Linear%20Estimation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chan,%20S%20C&rft.date=2011-02&rft.volume=58&rft.issue=2&rft.spage=120&rft.epage=124&rft.pages=120-124&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2011.2106314&rft_dat=%3Cproquest_RIE%3E1671246456%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853866036&rft_id=info:pmid/&rft_ieee_id=5719161&rfr_iscdi=true