Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations

This paper looks at revenue amounts generated by non-profit hospital foundations throughout the US.  A number of inputs, including, among others, compensation, type of support given to the hospital, type of foundation expenditures, and hospital size, were used to develop models of foundation revenue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of management & information systems 2011-01, Vol.15 (1), p.59
Hauptverfasser: Malliaris, Mary E., Pappas, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 59
container_title International journal of management & information systems
container_volume 15
creator Malliaris, Mary E.
Pappas, Maria
description This paper looks at revenue amounts generated by non-profit hospital foundations throughout the US.  A number of inputs, including, among others, compensation, type of support given to the hospital, type of foundation expenditures, and hospital size, were used to develop models of foundation revenue.  Both neural network and regression models were developed and compared in order to see which one gave a better model and to see how they ranked the relative value of the input variables.  Though the generated value of revenue for both models correlates highly with actual revenue, the neural network shows smaller error.  The order of variable importance for the models is very different.  Each model would have different implications for foundations in planning their next round of revenue generating events.
doi_str_mv 10.19030/ijmis.v15i1.1596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_853756956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276477291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696-34e61dd97ec23cbfed00de14e8c207fd9f0700ae0a7978aa121a6ba388579d173</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOOZ-gHfF-86cpkka72S4D5gTxvA2pM2pdK7NTNqJ_96u03Nz4OF9z4GHkHugU1CU0cdqX1dhegJewRS4EldklACXsRJJdk1GwFMRc5lmt2QSwp72kyqWcBiRfIsnbDqMFtigN23lmmjVREsXjlVrDtHcdY0dcHiKNtj5nm2w_Xb-M3pHH7oQbfHDYwjn5quzeOhB4eoa_3t35KY0h4CTvz0mu_nLbraM12-L1ex5HRdCiZilKMBaJbFIWJGXaCm1CClmRUJlaVVJJaUGqZFKZsZAAkbkhmUZl8qCZGPycDl79O6rw9Dqvet803_UGWeSC8VFH4JLqPAuBI-lPvqqNv5HA9WDSz241INLfXbJfgHmaGqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853756956</pqid></control><display><type>article</type><title>Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Malliaris, Mary E. ; Pappas, Maria</creator><creatorcontrib>Malliaris, Mary E. ; Pappas, Maria</creatorcontrib><description>This paper looks at revenue amounts generated by non-profit hospital foundations throughout the US.  A number of inputs, including, among others, compensation, type of support given to the hospital, type of foundation expenditures, and hospital size, were used to develop models of foundation revenue.  Both neural network and regression models were developed and compared in order to see which one gave a better model and to see how they ranked the relative value of the input variables.  Though the generated value of revenue for both models correlates highly with actual revenue, the neural network shows smaller error.  The order of variable importance for the models is very different.  Each model would have different implications for foundations in planning their next round of revenue generating events.</description><identifier>ISSN: 1546-5748</identifier><identifier>EISSN: 2157-9628</identifier><identifier>DOI: 10.19030/ijmis.v15i1.1596</identifier><language>eng</language><publisher>Littleton: The Clute Institute</publisher><subject>Boards of directors ; Charities ; Compensation ; Decision making ; Fund raising ; Hospital costs ; Neural networks ; Nonprofit hospitals ; Nonprofit organizations ; Operating revenue ; Regression analysis ; Studies</subject><ispartof>International journal of management &amp; information systems, 2011-01, Vol.15 (1), p.59</ispartof><rights>Copyright Clute Institute for Academic Research First Quarter 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malliaris, Mary E.</creatorcontrib><creatorcontrib>Pappas, Maria</creatorcontrib><title>Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations</title><title>International journal of management &amp; information systems</title><description>This paper looks at revenue amounts generated by non-profit hospital foundations throughout the US.  A number of inputs, including, among others, compensation, type of support given to the hospital, type of foundation expenditures, and hospital size, were used to develop models of foundation revenue.  Both neural network and regression models were developed and compared in order to see which one gave a better model and to see how they ranked the relative value of the input variables.  Though the generated value of revenue for both models correlates highly with actual revenue, the neural network shows smaller error.  The order of variable importance for the models is very different.  Each model would have different implications for foundations in planning their next round of revenue generating events.</description><subject>Boards of directors</subject><subject>Charities</subject><subject>Compensation</subject><subject>Decision making</subject><subject>Fund raising</subject><subject>Hospital costs</subject><subject>Neural networks</subject><subject>Nonprofit hospitals</subject><subject>Nonprofit organizations</subject><subject>Operating revenue</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>1546-5748</issn><issn>2157-9628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo1kF1LwzAUhoMoOOZ-gHfF-86cpkka72S4D5gTxvA2pM2pdK7NTNqJ_96u03Nz4OF9z4GHkHugU1CU0cdqX1dhegJewRS4EldklACXsRJJdk1GwFMRc5lmt2QSwp72kyqWcBiRfIsnbDqMFtigN23lmmjVREsXjlVrDtHcdY0dcHiKNtj5nm2w_Xb-M3pHH7oQbfHDYwjn5quzeOhB4eoa_3t35KY0h4CTvz0mu_nLbraM12-L1ex5HRdCiZilKMBaJbFIWJGXaCm1CClmRUJlaVVJJaUGqZFKZsZAAkbkhmUZl8qCZGPycDl79O6rw9Dqvet803_UGWeSC8VFH4JLqPAuBI-lPvqqNv5HA9WDSz241INLfXbJfgHmaGqy</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Malliaris, Mary E.</creator><creator>Pappas, Maria</creator><general>The Clute Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20110125</creationdate><title>Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations</title><author>Malliaris, Mary E. ; Pappas, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696-34e61dd97ec23cbfed00de14e8c207fd9f0700ae0a7978aa121a6ba388579d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boards of directors</topic><topic>Charities</topic><topic>Compensation</topic><topic>Decision making</topic><topic>Fund raising</topic><topic>Hospital costs</topic><topic>Neural networks</topic><topic>Nonprofit hospitals</topic><topic>Nonprofit organizations</topic><topic>Operating revenue</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Malliaris, Mary E.</creatorcontrib><creatorcontrib>Pappas, Maria</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of management &amp; information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malliaris, Mary E.</au><au>Pappas, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations</atitle><jtitle>International journal of management &amp; information systems</jtitle><date>2011-01-25</date><risdate>2011</risdate><volume>15</volume><issue>1</issue><spage>59</spage><pages>59-</pages><issn>1546-5748</issn><eissn>2157-9628</eissn><abstract>This paper looks at revenue amounts generated by non-profit hospital foundations throughout the US.  A number of inputs, including, among others, compensation, type of support given to the hospital, type of foundation expenditures, and hospital size, were used to develop models of foundation revenue.  Both neural network and regression models were developed and compared in order to see which one gave a better model and to see how they ranked the relative value of the input variables.  Though the generated value of revenue for both models correlates highly with actual revenue, the neural network shows smaller error.  The order of variable importance for the models is very different.  Each model would have different implications for foundations in planning their next round of revenue generating events.</abstract><cop>Littleton</cop><pub>The Clute Institute</pub><doi>10.19030/ijmis.v15i1.1596</doi></addata></record>
fulltext fulltext
identifier ISSN: 1546-5748
ispartof International journal of management & information systems, 2011-01, Vol.15 (1), p.59
issn 1546-5748
2157-9628
language eng
recordid cdi_proquest_journals_853756956
source EZB-FREE-00999 freely available EZB journals
subjects Boards of directors
Charities
Compensation
Decision making
Fund raising
Hospital costs
Neural networks
Nonprofit hospitals
Nonprofit organizations
Operating revenue
Regression analysis
Studies
title Revenue Generation In Hospital Foundations: Neural Network Versus Regression Model Recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revenue%20Generation%20In%20Hospital%20Foundations:%20Neural%20Network%20Versus%20Regression%20Model%20Recommendations&rft.jtitle=International%20journal%20of%20management%20&%20information%20systems&rft.au=Malliaris,%20Mary%20E.&rft.date=2011-01-25&rft.volume=15&rft.issue=1&rft.spage=59&rft.pages=59-&rft.issn=1546-5748&rft.eissn=2157-9628&rft_id=info:doi/10.19030/ijmis.v15i1.1596&rft_dat=%3Cproquest_cross%3E2276477291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853756956&rft_id=info:pmid/&rfr_iscdi=true