Method of nondestructive monitoring of fuel-element seal tightness

A method of monitoring the seal tightness of fuel elements is described. The method is based on determining leaks of gaseous fission products during annealing of preirradiated samples. The basic steps using this method are described and mathematical expressions for determining the constants of the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic energy (New York, N.Y.) N.Y.), 2011-02, Vol.109 (4), p.285-291
Hauptverfasser: Agulnik, M. A., Bylkin, B. K., Momot, G. V., Morgunova, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 4
container_start_page 285
container_title Atomic energy (New York, N.Y.)
container_volume 109
creator Agulnik, M. A.
Bylkin, B. K.
Momot, G. V.
Morgunova, V. A.
description A method of monitoring the seal tightness of fuel elements is described. The method is based on determining leaks of gaseous fission products during annealing of preirradiated samples. The basic steps using this method are described and mathematical expressions for determining the constants of the activation model of the leakage of gaseous fission products, which is used for processing and analyzing experimental results, are presented. The measurements results obtained using the method develop are compared with the results obtained in reactor tests of spherical fuel elements. An example using the technique is described: simulators, for which the temperature dependence of 135 Xe leakage (to 1400 K) is obtained and a quantitative relation between the number of microfuel elements with damaged coatings and leakage of gaseous fuel products, are tested. It is found that technological contamination of graphite of the simulators by uranium is present.
doi_str_mv 10.1007/s10512-011-9358-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_853332537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355777145</galeid><sourcerecordid>A355777145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9dfda9ae9f6029343644e324e91e33b334c827ab8ce926f3c8f5a2e30bdcbf133</originalsourceid><addsrcrecordid>eNp1kU1PJCEQhjsbTdaP_QF76-xtDyhQTTccx8l-mIwxUfdMGLoY2_TACLTRf79M2sTMwXCAFM8DlXqr6jujF4zS7jIxKhgnlDGiQEgiv1QnTHRAJKfiqJxpC6ThQn6tTlN6opSqVsmT6uoG82Po6-BqH3yPKcfJ5uEF623wQw5x8Jv9pZtwJDjiFn2uE5qxzsPmMXtM6bw6dmZM-O19P6v-_f71sPxLVrd_rpeLFbHQ0ExU73qjDCrXUq6ggbZpEHiDiiHAGqCxkndmLS0q3jqw0gnDEei6t2vHAM6qH_O7uxiep9KpfgpT9OVLLQUAcAFdgS5maGNG1IN3IUdjy-pxO9jg0Q2lvgAhuq5jjSjCzwOhMBlf88ZMKenr-7tDls2sjSGliE7v4rA18U0zqvcx6DkGXWLQ-xi0LA6fnbTbzxLjR9efS_8B2iWJgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853332537</pqid></control><display><type>article</type><title>Method of nondestructive monitoring of fuel-element seal tightness</title><source>SpringerNature Journals</source><creator>Agulnik, M. A. ; Bylkin, B. K. ; Momot, G. V. ; Morgunova, V. A.</creator><creatorcontrib>Agulnik, M. A. ; Bylkin, B. K. ; Momot, G. V. ; Morgunova, V. A.</creatorcontrib><description>A method of monitoring the seal tightness of fuel elements is described. The method is based on determining leaks of gaseous fission products during annealing of preirradiated samples. The basic steps using this method are described and mathematical expressions for determining the constants of the activation model of the leakage of gaseous fission products, which is used for processing and analyzing experimental results, are presented. The measurements results obtained using the method develop are compared with the results obtained in reactor tests of spherical fuel elements. An example using the technique is described: simulators, for which the temperature dependence of 135 Xe leakage (to 1400 K) is obtained and a quantitative relation between the number of microfuel elements with damaged coatings and leakage of gaseous fuel products, are tested. It is found that technological contamination of graphite of the simulators by uranium is present.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-011-9358-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Annealing ; Evaluation ; Fission products ; Graphite ; Hadrons ; Heavy Ions ; Industrial equipment ; Isotopes ; Methods ; Monitoring methods ; Monitoring systems ; Nuclear Chemistry ; Nuclear Energy ; Nuclear fuels ; Nuclear Physics ; Nuclear reactors ; Physics ; Physics and Astronomy ; Seals ; Studies ; Synthetic training device industry ; Uranium</subject><ispartof>Atomic energy (New York, N.Y.), 2011-02, Vol.109 (4), p.285-291</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-011-9358-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-011-9358-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Agulnik, M. A.</creatorcontrib><creatorcontrib>Bylkin, B. K.</creatorcontrib><creatorcontrib>Momot, G. V.</creatorcontrib><creatorcontrib>Morgunova, V. A.</creatorcontrib><title>Method of nondestructive monitoring of fuel-element seal tightness</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>A method of monitoring the seal tightness of fuel elements is described. The method is based on determining leaks of gaseous fission products during annealing of preirradiated samples. The basic steps using this method are described and mathematical expressions for determining the constants of the activation model of the leakage of gaseous fission products, which is used for processing and analyzing experimental results, are presented. The measurements results obtained using the method develop are compared with the results obtained in reactor tests of spherical fuel elements. An example using the technique is described: simulators, for which the temperature dependence of 135 Xe leakage (to 1400 K) is obtained and a quantitative relation between the number of microfuel elements with damaged coatings and leakage of gaseous fuel products, are tested. It is found that technological contamination of graphite of the simulators by uranium is present.</description><subject>Analysis</subject><subject>Annealing</subject><subject>Evaluation</subject><subject>Fission products</subject><subject>Graphite</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Industrial equipment</subject><subject>Isotopes</subject><subject>Methods</subject><subject>Monitoring methods</subject><subject>Monitoring systems</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear fuels</subject><subject>Nuclear Physics</subject><subject>Nuclear reactors</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Seals</subject><subject>Studies</subject><subject>Synthetic training device industry</subject><subject>Uranium</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1PJCEQhjsbTdaP_QF76-xtDyhQTTccx8l-mIwxUfdMGLoY2_TACLTRf79M2sTMwXCAFM8DlXqr6jujF4zS7jIxKhgnlDGiQEgiv1QnTHRAJKfiqJxpC6ThQn6tTlN6opSqVsmT6uoG82Po6-BqH3yPKcfJ5uEF623wQw5x8Jv9pZtwJDjiFn2uE5qxzsPmMXtM6bw6dmZM-O19P6v-_f71sPxLVrd_rpeLFbHQ0ExU73qjDCrXUq6ggbZpEHiDiiHAGqCxkndmLS0q3jqw0gnDEei6t2vHAM6qH_O7uxiep9KpfgpT9OVLLQUAcAFdgS5maGNG1IN3IUdjy-pxO9jg0Q2lvgAhuq5jjSjCzwOhMBlf88ZMKenr-7tDls2sjSGliE7v4rA18U0zqvcx6DkGXWLQ-xi0LA6fnbTbzxLjR9efS_8B2iWJgw</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Agulnik, M. A.</creator><creator>Bylkin, B. K.</creator><creator>Momot, G. V.</creator><creator>Morgunova, V. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Method of nondestructive monitoring of fuel-element seal tightness</title><author>Agulnik, M. A. ; Bylkin, B. K. ; Momot, G. V. ; Morgunova, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9dfda9ae9f6029343644e324e91e33b334c827ab8ce926f3c8f5a2e30bdcbf133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Annealing</topic><topic>Evaluation</topic><topic>Fission products</topic><topic>Graphite</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Industrial equipment</topic><topic>Isotopes</topic><topic>Methods</topic><topic>Monitoring methods</topic><topic>Monitoring systems</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear fuels</topic><topic>Nuclear Physics</topic><topic>Nuclear reactors</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Seals</topic><topic>Studies</topic><topic>Synthetic training device industry</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agulnik, M. A.</creatorcontrib><creatorcontrib>Bylkin, B. K.</creatorcontrib><creatorcontrib>Momot, G. V.</creatorcontrib><creatorcontrib>Morgunova, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agulnik, M. A.</au><au>Bylkin, B. K.</au><au>Momot, G. V.</au><au>Morgunova, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of nondestructive monitoring of fuel-element seal tightness</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>109</volume><issue>4</issue><spage>285</spage><epage>291</epage><pages>285-291</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>A method of monitoring the seal tightness of fuel elements is described. The method is based on determining leaks of gaseous fission products during annealing of preirradiated samples. The basic steps using this method are described and mathematical expressions for determining the constants of the activation model of the leakage of gaseous fission products, which is used for processing and analyzing experimental results, are presented. The measurements results obtained using the method develop are compared with the results obtained in reactor tests of spherical fuel elements. An example using the technique is described: simulators, for which the temperature dependence of 135 Xe leakage (to 1400 K) is obtained and a quantitative relation between the number of microfuel elements with damaged coatings and leakage of gaseous fuel products, are tested. It is found that technological contamination of graphite of the simulators by uranium is present.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10512-011-9358-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4258
ispartof Atomic energy (New York, N.Y.), 2011-02, Vol.109 (4), p.285-291
issn 1063-4258
1573-8205
language eng
recordid cdi_proquest_journals_853332537
source SpringerNature Journals
subjects Analysis
Annealing
Evaluation
Fission products
Graphite
Hadrons
Heavy Ions
Industrial equipment
Isotopes
Methods
Monitoring methods
Monitoring systems
Nuclear Chemistry
Nuclear Energy
Nuclear fuels
Nuclear Physics
Nuclear reactors
Physics
Physics and Astronomy
Seals
Studies
Synthetic training device industry
Uranium
title Method of nondestructive monitoring of fuel-element seal tightness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20nondestructive%20monitoring%20of%20fuel-element%20seal%20tightness&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Agulnik,%20M.%20A.&rft.date=2011-02-01&rft.volume=109&rft.issue=4&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-011-9358-8&rft_dat=%3Cgale_proqu%3EA355777145%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853332537&rft_id=info:pmid/&rft_galeid=A355777145&rfr_iscdi=true