Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes

Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil Science Society of America journal 2011, Vol.75 (1), p.121-130
Hauptverfasser: White, Charles M, Weil, Ray R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 121
container_title Soil Science Society of America journal
container_volume 75
creator White, Charles M
Weil, Ray R
description Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a taproot that decays during the winter and leaves distinct holes in the surface soil. This study measured P uptake by FR and cereal rye (CR) (Secale cereale L.) cover crops; the Mehlich 3 P concentration (M3P) in bulk soil following FR, CR, and no cover crop (NC); and M3P in soil within 3 cm of FR taproot holes. Cover crop treatments of FR, CR, and NC were established at two sites each fall for three subsequent years in a cover crop–corn (Zea mays L.) silage rotation. Cover crop shoot P uptake ranged from 5.9 to 25 kg P ha−1 for FR measured in the fall and from 3.0 to 26 kg P ha−1 for CR measured in the spring. The greatest cover crop effect on bulk soil M3P was observed at the 0- to 2.5-cm depth after 3 yr of cover crops, with M3P values of 101, 82, and 79 mg P kg−1 after FR, CR, and NC, respectively. Soil within 3 cm of FR taproot holes had greater M3P than FR and NC bulk soil. Further studies should be conducted to determine if FR could increase P removal rates in excessively high P soils or increase P availability in low P soils.
doi_str_mv 10.2136/sssaj2010.0095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_848935591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256699941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3745-ac9c08b5ed3771edf2e8b6391b07de49d24ca9d0c5c087baaaafc4f06e04a8433</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoOH9cvRoEj9VvmqZtDh7GUKcIip3gLaRpunXUpuZrlf33Zmzuag4JST7vvS-PkDMGVzHj6TUi6mUM4QogxR4ZsYSLCNKU7ZMR8JRFQkpxSI4QlwBMSIAReb9zXs8tfdVVgws6cd_W04l3PdKHznir0dLCNS2dWfyiLwuH_cL5AWkxeO-Grmq6-Z94pnvv3BedutbiCTmodYv2dHsek7e729lkGj093z9Mxk-R4VkiIm2kgbwUtuJZxmxVxzYvUy5ZCVllE1nFidGyAiMClpU6rNokNaQWEp0nnB-Ti41vyP4cwpBq6QbfhUiVJ7nkQkgWoKsNZLxD9LZWvW8-tF8pBmpdntqVp9blBcHl1lWj0W3tdWca3KniMDvjWR64mw3307R29Y-rKsaPcVGs9_C0zTnf6GvtlJ77kPFWhF8OTMZCZDH_BQn3jGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848935591</pqid></control><display><type>article</type><title>Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes</title><source>Wiley Online Library All Journals</source><creator>White, Charles M ; Weil, Ray R</creator><creatorcontrib>White, Charles M ; Weil, Ray R</creatorcontrib><description>Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a taproot that decays during the winter and leaves distinct holes in the surface soil. This study measured P uptake by FR and cereal rye (CR) (Secale cereale L.) cover crops; the Mehlich 3 P concentration (M3P) in bulk soil following FR, CR, and no cover crop (NC); and M3P in soil within 3 cm of FR taproot holes. Cover crop treatments of FR, CR, and NC were established at two sites each fall for three subsequent years in a cover crop–corn (Zea mays L.) silage rotation. Cover crop shoot P uptake ranged from 5.9 to 25 kg P ha−1 for FR measured in the fall and from 3.0 to 26 kg P ha−1 for CR measured in the spring. The greatest cover crop effect on bulk soil M3P was observed at the 0- to 2.5-cm depth after 3 yr of cover crops, with M3P values of 101, 82, and 79 mg P kg−1 after FR, CR, and NC, respectively. Soil within 3 cm of FR taproot holes had greater M3P than FR and NC bulk soil. Further studies should be conducted to determine if FR could increase P removal rates in excessively high P soils or increase P availability in low P soils.</description><identifier>ISSN: 0361-5995</identifier><identifier>EISSN: 1435-0661</identifier><identifier>DOI: 10.2136/sssaj2010.0095</identifier><identifier>CODEN: SSSJD4</identifier><language>eng</language><publisher>Madison: Soil Science Society</publisher><subject>Agricultural ecosystems ; Agricultural practices ; Agronomy. Soil science and plant productions ; biodegradation ; biogeochemical cycles ; Biological and medical sciences ; Cereal crops ; corn silage ; Cover crops ; crop rotation ; Crops ; Decomposition ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; forage crops ; Fundamental and applied biological sciences. Psychology ; Manures ; nutrient availability ; Nutrient cycles ; phosphorus ; radishes ; Raphanus sativus ; rye ; Secale cereale ; Soil erosion ; Soil fertility ; Soil science ; Soil surfaces ; soil test values ; Soil testing ; Soils ; spatial distribution ; spatial variation ; Spring ; Studies ; Surficial geology ; temporal variation ; Winter ; Zea mays</subject><ispartof>Soil Science Society of America journal, 2011, Vol.75 (1), p.121-130</ispartof><rights>Soil Science Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jan/Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3745-ac9c08b5ed3771edf2e8b6391b07de49d24ca9d0c5c087baaaafc4f06e04a8433</citedby><cites>FETCH-LOGICAL-c3745-ac9c08b5ed3771edf2e8b6391b07de49d24ca9d0c5c087baaaafc4f06e04a8433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fsssaj2010.0095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fsssaj2010.0095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23741378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Charles M</creatorcontrib><creatorcontrib>Weil, Ray R</creatorcontrib><title>Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes</title><title>Soil Science Society of America journal</title><description>Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a taproot that decays during the winter and leaves distinct holes in the surface soil. This study measured P uptake by FR and cereal rye (CR) (Secale cereale L.) cover crops; the Mehlich 3 P concentration (M3P) in bulk soil following FR, CR, and no cover crop (NC); and M3P in soil within 3 cm of FR taproot holes. Cover crop treatments of FR, CR, and NC were established at two sites each fall for three subsequent years in a cover crop–corn (Zea mays L.) silage rotation. Cover crop shoot P uptake ranged from 5.9 to 25 kg P ha−1 for FR measured in the fall and from 3.0 to 26 kg P ha−1 for CR measured in the spring. The greatest cover crop effect on bulk soil M3P was observed at the 0- to 2.5-cm depth after 3 yr of cover crops, with M3P values of 101, 82, and 79 mg P kg−1 after FR, CR, and NC, respectively. Soil within 3 cm of FR taproot holes had greater M3P than FR and NC bulk soil. Further studies should be conducted to determine if FR could increase P removal rates in excessively high P soils or increase P availability in low P soils.</description><subject>Agricultural ecosystems</subject><subject>Agricultural practices</subject><subject>Agronomy. Soil science and plant productions</subject><subject>biodegradation</subject><subject>biogeochemical cycles</subject><subject>Biological and medical sciences</subject><subject>Cereal crops</subject><subject>corn silage</subject><subject>Cover crops</subject><subject>crop rotation</subject><subject>Crops</subject><subject>Decomposition</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>forage crops</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Manures</subject><subject>nutrient availability</subject><subject>Nutrient cycles</subject><subject>phosphorus</subject><subject>radishes</subject><subject>Raphanus sativus</subject><subject>rye</subject><subject>Secale cereale</subject><subject>Soil erosion</subject><subject>Soil fertility</subject><subject>Soil science</subject><subject>Soil surfaces</subject><subject>soil test values</subject><subject>Soil testing</subject><subject>Soils</subject><subject>spatial distribution</subject><subject>spatial variation</subject><subject>Spring</subject><subject>Studies</subject><subject>Surficial geology</subject><subject>temporal variation</subject><subject>Winter</subject><subject>Zea mays</subject><issn>0361-5995</issn><issn>1435-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM9LwzAcxYMoOH9cvRoEj9VvmqZtDh7GUKcIip3gLaRpunXUpuZrlf33Zmzuag4JST7vvS-PkDMGVzHj6TUi6mUM4QogxR4ZsYSLCNKU7ZMR8JRFQkpxSI4QlwBMSIAReb9zXs8tfdVVgws6cd_W04l3PdKHznir0dLCNS2dWfyiLwuH_cL5AWkxeO-Grmq6-Z94pnvv3BedutbiCTmodYv2dHsek7e729lkGj093z9Mxk-R4VkiIm2kgbwUtuJZxmxVxzYvUy5ZCVllE1nFidGyAiMClpU6rNokNaQWEp0nnB-Ti41vyP4cwpBq6QbfhUiVJ7nkQkgWoKsNZLxD9LZWvW8-tF8pBmpdntqVp9blBcHl1lWj0W3tdWca3KniMDvjWR64mw3307R29Y-rKsaPcVGs9_C0zTnf6GvtlJ77kPFWhF8OTMZCZDH_BQn3jGk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>White, Charles M</creator><creator>Weil, Ray R</creator><general>Soil Science Society</general><general>Soil Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>2011</creationdate><title>Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes</title><author>White, Charles M ; Weil, Ray R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3745-ac9c08b5ed3771edf2e8b6391b07de49d24ca9d0c5c087baaaafc4f06e04a8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural practices</topic><topic>Agronomy. Soil science and plant productions</topic><topic>biodegradation</topic><topic>biogeochemical cycles</topic><topic>Biological and medical sciences</topic><topic>Cereal crops</topic><topic>corn silage</topic><topic>Cover crops</topic><topic>crop rotation</topic><topic>Crops</topic><topic>Decomposition</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>forage crops</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Manures</topic><topic>nutrient availability</topic><topic>Nutrient cycles</topic><topic>phosphorus</topic><topic>radishes</topic><topic>Raphanus sativus</topic><topic>rye</topic><topic>Secale cereale</topic><topic>Soil erosion</topic><topic>Soil fertility</topic><topic>Soil science</topic><topic>Soil surfaces</topic><topic>soil test values</topic><topic>Soil testing</topic><topic>Soils</topic><topic>spatial distribution</topic><topic>spatial variation</topic><topic>Spring</topic><topic>Studies</topic><topic>Surficial geology</topic><topic>temporal variation</topic><topic>Winter</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Charles M</creatorcontrib><creatorcontrib>Weil, Ray R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Soil Science Society of America journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Charles M</au><au>Weil, Ray R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes</atitle><jtitle>Soil Science Society of America journal</jtitle><date>2011</date><risdate>2011</risdate><volume>75</volume><issue>1</issue><spage>121</spage><epage>130</epage><pages>121-130</pages><issn>0361-5995</issn><eissn>1435-0661</eissn><coden>SSSJD4</coden><abstract>Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a taproot that decays during the winter and leaves distinct holes in the surface soil. This study measured P uptake by FR and cereal rye (CR) (Secale cereale L.) cover crops; the Mehlich 3 P concentration (M3P) in bulk soil following FR, CR, and no cover crop (NC); and M3P in soil within 3 cm of FR taproot holes. Cover crop treatments of FR, CR, and NC were established at two sites each fall for three subsequent years in a cover crop–corn (Zea mays L.) silage rotation. Cover crop shoot P uptake ranged from 5.9 to 25 kg P ha−1 for FR measured in the fall and from 3.0 to 26 kg P ha−1 for CR measured in the spring. The greatest cover crop effect on bulk soil M3P was observed at the 0- to 2.5-cm depth after 3 yr of cover crops, with M3P values of 101, 82, and 79 mg P kg−1 after FR, CR, and NC, respectively. Soil within 3 cm of FR taproot holes had greater M3P than FR and NC bulk soil. Further studies should be conducted to determine if FR could increase P removal rates in excessively high P soils or increase P availability in low P soils.</abstract><cop>Madison</cop><pub>Soil Science Society</pub><doi>10.2136/sssaj2010.0095</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5995
ispartof Soil Science Society of America journal, 2011, Vol.75 (1), p.121-130
issn 0361-5995
1435-0661
language eng
recordid cdi_proquest_journals_848935591
source Wiley Online Library All Journals
subjects Agricultural ecosystems
Agricultural practices
Agronomy. Soil science and plant productions
biodegradation
biogeochemical cycles
Biological and medical sciences
Cereal crops
corn silage
Cover crops
crop rotation
Crops
Decomposition
Earth sciences
Earth, ocean, space
Exact sciences and technology
forage crops
Fundamental and applied biological sciences. Psychology
Manures
nutrient availability
Nutrient cycles
phosphorus
radishes
Raphanus sativus
rye
Secale cereale
Soil erosion
Soil fertility
Soil science
Soil surfaces
soil test values
Soil testing
Soils
spatial distribution
spatial variation
Spring
Studies
Surficial geology
temporal variation
Winter
Zea mays
title Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forage%20Radish%20Cover%20Crops%20Increase%20Soil%20Test%20Phosphorus%20Surrounding%20Radish%20Taproot%20Holes&rft.jtitle=Soil%20Science%20Society%20of%20America%20journal&rft.au=White,%20Charles%20M&rft.date=2011&rft.volume=75&rft.issue=1&rft.spage=121&rft.epage=130&rft.pages=121-130&rft.issn=0361-5995&rft.eissn=1435-0661&rft.coden=SSSJD4&rft_id=info:doi/10.2136/sssaj2010.0095&rft_dat=%3Cproquest_cross%3E2256699941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848935591&rft_id=info:pmid/&rfr_iscdi=true