Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest

Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long‐term experimentation. Fortunately, Pendleton long‐term experiments (LTEs), dating to the 1930s, provide some answers. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2011-01, Vol.103 (1), p.253-260
1. Verfasser: Machado, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 253
container_title Agronomy journal
container_volume 103
creator Machado, Stephen
description Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long‐term experimentation. Fortunately, Pendleton long‐term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat (Triticum aestivum L.)–summer fallow (WW‐SF) systems with annual rotation of WW and spring pea (Pisum sativum L.). The WW‐SF consisted of crop residue (CR‐LTE) (0–90 N ha−1 yr−1, 11.2 Mg ha−1 yr−1 of steer (Bos taurus) manure and 1.1 Mg ha−1 yr−1of pea vines additions, residue burning, and tillage fertility (TF‐LTE) (tillage‐ plow, disc, sweep, and N (0–180 kg ha−1)). Winter wheat–pea (WP‐LTE) rotation treatments included maxi‐till (MT‐disc/chisel), fall plow (FP), spring plow (SP), and no‐till (NT). Soils were sampled (0–60‐cm depth) at 10‐yr intervals, and grain yield and residue data collected every year. In WW‐SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha−1 yr−1 in other treatments. In WP‐LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha−1 yr−1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR‐LTE, TF‐LTE, and WP‐LTE was 7.8, 5.8, and 5.2 Mg ha−1 yr−1, respectively. Winter wheat‐SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.
doi_str_mv 10.2134/agronj2010.0205s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_848933712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256707371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328S-475fba65f260acc347f30b98d542b01f863b278e750efd1fbaa51bac06e65ff03</originalsourceid><addsrcrecordid>eNqFUMtOAjEUbYwmIrp32bgfvW3nhTtERA0RIrqedEqLJUOL7UyQlX6C3-iX2BETl65u7rnnkXsQOiVwTgmLL_jCWbOkEHagkPg91CExSyJI42QfdQCARqSX0kN05P0SgJBeTDrofWZ1hSduwY0WeMBdaQ2-3hq-0sJjbXD9IvFUmnkl63AZW7P4-vh8km6Fh29r6fRKmtpf4rvVutKC19oaj5V1-Epb1cgKT52dN6LFW7cpF1qFoAfr6peN9PUxOlC88vLkd3bR883waXAbjSeju0F_HAlG81kUZ4kqeZoomgIXgsWZYlD28nkS0xKIylNW0iyXWQJSzUng8oSUXEAqg0gB66Kzne_a2dcmBBdL2zgTIos8znuMZYQGEuxIwlnvnVTFOjzI3bYgULQtF38tFz8tB0l_J9noSm7_5Rf90T3tjx4nD_ct2GIz9g3bZIhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848933712</pqid></control><display><type>article</type><title>Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Machado, Stephen</creator><creatorcontrib>Machado, Stephen</creatorcontrib><description>Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long‐term experimentation. Fortunately, Pendleton long‐term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat (Triticum aestivum L.)–summer fallow (WW‐SF) systems with annual rotation of WW and spring pea (Pisum sativum L.). The WW‐SF consisted of crop residue (CR‐LTE) (0–90 N ha−1 yr−1, 11.2 Mg ha−1 yr−1 of steer (Bos taurus) manure and 1.1 Mg ha−1 yr−1of pea vines additions, residue burning, and tillage fertility (TF‐LTE) (tillage‐ plow, disc, sweep, and N (0–180 kg ha−1)). Winter wheat–pea (WP‐LTE) rotation treatments included maxi‐till (MT‐disc/chisel), fall plow (FP), spring plow (SP), and no‐till (NT). Soils were sampled (0–60‐cm depth) at 10‐yr intervals, and grain yield and residue data collected every year. In WW‐SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha−1 yr−1 in other treatments. In WP‐LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha−1 yr−1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR‐LTE, TF‐LTE, and WP‐LTE was 7.8, 5.8, and 5.2 Mg ha−1 yr−1, respectively. Winter wheat‐SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.2134/agronj2010.0205s</identifier><language>eng</language><publisher>Madison: American Society of Agronomy</publisher><subject>Biofuels ; Organic carbon</subject><ispartof>Agronomy journal, 2011-01, Vol.103 (1), p.253-260</ispartof><rights>Copyright © 2011 by the American Society of Agronomy</rights><rights>Copyright American Society of Agronomy Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328S-475fba65f260acc347f30b98d542b01f863b278e750efd1fbaa51bac06e65ff03</citedby><cites>FETCH-LOGICAL-c328S-475fba65f260acc347f30b98d542b01f863b278e750efd1fbaa51bac06e65ff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fagronj2010.0205s$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fagronj2010.0205s$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Machado, Stephen</creatorcontrib><title>Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest</title><title>Agronomy journal</title><description>Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long‐term experimentation. Fortunately, Pendleton long‐term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat (Triticum aestivum L.)–summer fallow (WW‐SF) systems with annual rotation of WW and spring pea (Pisum sativum L.). The WW‐SF consisted of crop residue (CR‐LTE) (0–90 N ha−1 yr−1, 11.2 Mg ha−1 yr−1 of steer (Bos taurus) manure and 1.1 Mg ha−1 yr−1of pea vines additions, residue burning, and tillage fertility (TF‐LTE) (tillage‐ plow, disc, sweep, and N (0–180 kg ha−1)). Winter wheat–pea (WP‐LTE) rotation treatments included maxi‐till (MT‐disc/chisel), fall plow (FP), spring plow (SP), and no‐till (NT). Soils were sampled (0–60‐cm depth) at 10‐yr intervals, and grain yield and residue data collected every year. In WW‐SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha−1 yr−1 in other treatments. In WP‐LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha−1 yr−1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR‐LTE, TF‐LTE, and WP‐LTE was 7.8, 5.8, and 5.2 Mg ha−1 yr−1, respectively. Winter wheat‐SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.</description><subject>Biofuels</subject><subject>Organic carbon</subject><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUMtOAjEUbYwmIrp32bgfvW3nhTtERA0RIrqedEqLJUOL7UyQlX6C3-iX2BETl65u7rnnkXsQOiVwTgmLL_jCWbOkEHagkPg91CExSyJI42QfdQCARqSX0kN05P0SgJBeTDrofWZ1hSduwY0WeMBdaQ2-3hq-0sJjbXD9IvFUmnkl63AZW7P4-vh8km6Fh29r6fRKmtpf4rvVutKC19oaj5V1-Epb1cgKT52dN6LFW7cpF1qFoAfr6peN9PUxOlC88vLkd3bR883waXAbjSeju0F_HAlG81kUZ4kqeZoomgIXgsWZYlD28nkS0xKIylNW0iyXWQJSzUng8oSUXEAqg0gB66Kzne_a2dcmBBdL2zgTIos8znuMZYQGEuxIwlnvnVTFOjzI3bYgULQtF38tFz8tB0l_J9noSm7_5Rf90T3tjx4nD_ct2GIz9g3bZIhw</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Machado, Stephen</creator><general>American Society of Agronomy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201101</creationdate><title>Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest</title><author>Machado, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328S-475fba65f260acc347f30b98d542b01f863b278e750efd1fbaa51bac06e65ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biofuels</topic><topic>Organic carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, Stephen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest</atitle><jtitle>Agronomy journal</jtitle><date>2011-01</date><risdate>2011</risdate><volume>103</volume><issue>1</issue><spage>253</spage><epage>260</epage><pages>253-260</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><abstract>Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long‐term experimentation. Fortunately, Pendleton long‐term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat (Triticum aestivum L.)–summer fallow (WW‐SF) systems with annual rotation of WW and spring pea (Pisum sativum L.). The WW‐SF consisted of crop residue (CR‐LTE) (0–90 N ha−1 yr−1, 11.2 Mg ha−1 yr−1 of steer (Bos taurus) manure and 1.1 Mg ha−1 yr−1of pea vines additions, residue burning, and tillage fertility (TF‐LTE) (tillage‐ plow, disc, sweep, and N (0–180 kg ha−1)). Winter wheat–pea (WP‐LTE) rotation treatments included maxi‐till (MT‐disc/chisel), fall plow (FP), spring plow (SP), and no‐till (NT). Soils were sampled (0–60‐cm depth) at 10‐yr intervals, and grain yield and residue data collected every year. In WW‐SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha−1 yr−1 in other treatments. In WP‐LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha−1 yr−1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR‐LTE, TF‐LTE, and WP‐LTE was 7.8, 5.8, and 5.2 Mg ha−1 yr−1, respectively. Winter wheat‐SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.</abstract><cop>Madison</cop><pub>American Society of Agronomy</pub><doi>10.2134/agronj2010.0205s</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 2011-01, Vol.103 (1), p.253-260
issn 0002-1962
1435-0645
language eng
recordid cdi_proquest_journals_848933712
source Wiley Online Library - AutoHoldings Journals
subjects Biofuels
Organic carbon
title Soil Organic Carbon Dynamics in the Pendleton Long‐Term Experiments: Implications for Biofuel Production in Pacific Northwest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20Organic%20Carbon%20Dynamics%20in%20the%20Pendleton%20Long%E2%80%90Term%20Experiments:%20Implications%20for%20Biofuel%20Production%20in%20Pacific%20Northwest&rft.jtitle=Agronomy%20journal&rft.au=Machado,%20Stephen&rft.date=2011-01&rft.volume=103&rft.issue=1&rft.spage=253&rft.epage=260&rft.pages=253-260&rft.issn=0002-1962&rft.eissn=1435-0645&rft_id=info:doi/10.2134/agronj2010.0205s&rft_dat=%3Cproquest_cross%3E2256707371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848933712&rft_id=info:pmid/&rfr_iscdi=true