Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators

For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2010-09, Vol.14 (3), p.373-381
Hauptverfasser: Ostaszewska, Urszula, Zajkowski, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 3
container_start_page 373
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 14
creator Ostaszewska, Urszula
Zajkowski, Krzysztof
description For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the set of all Borel probability and α -invariant measures on X . In other words is the Legendre– Fenchel conjugate of ln r ( e φ T α ). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form , . We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln r ( A φ , c ) considering it firstly depending on the function φ and the variable c and secondly depending only on the function φ , by fixing c .
doi_str_mv 10.1007/s11117-009-0023-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_847475850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250126511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLg-PgAd8V9NY-mTZYyOCoMuNF1SNObmQ5tUpMOOjv_wT_0S0yp4MoLl_s651w4CF0RfEMwrm4jSVHlGMuUlOXlEVoQXtFcUkGOU88EzwmV9BSdxbjDOLEKvEB2DRtwTYDvz68VOLOFLhuDdtH60GfeZuMWsjiAScsug4_BO3DjdBh8d3C-b3UXp_Ed2s12hCYzvh98bMfWu8wPEPToQ7xAJzYB4fK3nqPX1f3L8jFfPz88Le_WuWGEj7mm2tZlg4lgVtS4KiQWzJQltwIEplqWNZc1VLqkujGsII1pSLoBk4ZKbtk5up51h-Df9hBHtfP74NJLJYqqqLjgOIHIDDLBxxjAqiG0vQ4HRbCa3FSzmyq5qSY3VZk4dObEhHUbCH_C_5N-APsSerE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847475850</pqid></control><display><type>article</type><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ostaszewska, Urszula ; Zajkowski, Krzysztof</creator><creatorcontrib>Ostaszewska, Urszula ; Zajkowski, Krzysztof</creatorcontrib><description>For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the set of all Borel probability and α -invariant measures on X . In other words is the Legendre– Fenchel conjugate of ln r ( e φ T α ). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form , . We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln r ( A φ , c ) considering it firstly depending on the function φ and the variable c and secondly depending only on the function φ , by fixing c .</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-009-0023-6</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Entropy ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Polynomials ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.373-381</ispartof><rights>Birkhäuser Verlag Basel/Switzerland 2009</rights><rights>Springer Basel AG 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</citedby><cites>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-009-0023-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-009-0023-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ostaszewska, Urszula</creatorcontrib><creatorcontrib>Zajkowski, Krzysztof</creatorcontrib><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the set of all Borel probability and α -invariant measures on X . In other words is the Legendre– Fenchel conjugate of ln r ( e φ T α ). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form , . We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln r ( A φ , c ) considering it firstly depending on the function φ and the variable c and secondly depending only on the function φ , by fixing c .</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Entropy</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Polynomials</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtKxDAUDaLg-PgAd8V9NY-mTZYyOCoMuNF1SNObmQ5tUpMOOjv_wT_0S0yp4MoLl_s651w4CF0RfEMwrm4jSVHlGMuUlOXlEVoQXtFcUkGOU88EzwmV9BSdxbjDOLEKvEB2DRtwTYDvz68VOLOFLhuDdtH60GfeZuMWsjiAScsug4_BO3DjdBh8d3C-b3UXp_Ed2s12hCYzvh98bMfWu8wPEPToQ7xAJzYB4fK3nqPX1f3L8jFfPz88Le_WuWGEj7mm2tZlg4lgVtS4KiQWzJQltwIEplqWNZc1VLqkujGsII1pSLoBk4ZKbtk5up51h-Df9hBHtfP74NJLJYqqqLjgOIHIDDLBxxjAqiG0vQ4HRbCa3FSzmyq5qSY3VZk4dObEhHUbCH_C_5N-APsSerE</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ostaszewska, Urszula</creator><creator>Zajkowski, Krzysztof</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><author>Ostaszewska, Urszula ; Zajkowski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Entropy</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Polynomials</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostaszewska, Urszula</creatorcontrib><creatorcontrib>Zajkowski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostaszewska, Urszula</au><au>Zajkowski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>373</spage><epage>381</epage><pages>373-381</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the set of all Borel probability and α -invariant measures on X . In other words is the Legendre– Fenchel conjugate of ln r ( e φ T α ). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form , . We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln r ( A φ , c ) considering it firstly depending on the function φ and the variable c and secondly depending only on the function φ , by fixing c .</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s11117-009-0023-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.373-381
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_847475850
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
Econometrics
Entropy
Fourier Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Polynomials
Potential Theory
title Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Legendre%E2%80%93Fenchel%20transform%20of%20the%20spectral%20exponent%20of%20polynomials%20of%20weighted%20composition%20operators&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ostaszewska,%20Urszula&rft.date=2010-09-01&rft.volume=14&rft.issue=3&rft.spage=373&rft.epage=381&rft.pages=373-381&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-009-0023-6&rft_dat=%3Cproquest_cross%3E2250126511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847475850&rft_id=info:pmid/&rfr_iscdi=true