Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators
For the spectral radius of weighted composition operators with positive weight e φ T α , , acting in the spaces L p ( X , μ ) the following variational principle holds where X is a Hausdorff compact space, is a continuous mapping and τ α some convex and lower semicontinuous functional defined on the...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2010-09, Vol.14 (3), p.373-381 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 14 |
creator | Ostaszewska, Urszula Zajkowski, Krzysztof |
description | For the spectral radius of weighted composition operators with positive weight
e
φ
T
α
,
, acting in the spaces
L
p
(
X
,
μ
) the following variational principle holds
where
X
is a Hausdorff compact space,
is a continuous mapping and
τ
α
some convex and lower semicontinuous functional defined on the set
of all Borel probability and
α
-invariant measures on
X
. In other words
is the Legendre– Fenchel conjugate of ln
r
(
e
φ
T
α
). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form
,
. We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln
r
(
A
φ
,
c
) considering it firstly depending on the function
φ
and the variable
c
and secondly depending only on the function
φ
, by fixing
c
. |
doi_str_mv | 10.1007/s11117-009-0023-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_847475850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250126511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLg-PgAd8V9NY-mTZYyOCoMuNF1SNObmQ5tUpMOOjv_wT_0S0yp4MoLl_s651w4CF0RfEMwrm4jSVHlGMuUlOXlEVoQXtFcUkGOU88EzwmV9BSdxbjDOLEKvEB2DRtwTYDvz68VOLOFLhuDdtH60GfeZuMWsjiAScsug4_BO3DjdBh8d3C-b3UXp_Ed2s12hCYzvh98bMfWu8wPEPToQ7xAJzYB4fK3nqPX1f3L8jFfPz88Le_WuWGEj7mm2tZlg4lgVtS4KiQWzJQltwIEplqWNZc1VLqkujGsII1pSLoBk4ZKbtk5up51h-Df9hBHtfP74NJLJYqqqLjgOIHIDDLBxxjAqiG0vQ4HRbCa3FSzmyq5qSY3VZk4dObEhHUbCH_C_5N-APsSerE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847475850</pqid></control><display><type>article</type><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ostaszewska, Urszula ; Zajkowski, Krzysztof</creator><creatorcontrib>Ostaszewska, Urszula ; Zajkowski, Krzysztof</creatorcontrib><description>For the spectral radius of weighted composition operators with positive weight
e
φ
T
α
,
, acting in the spaces
L
p
(
X
,
μ
) the following variational principle holds
where
X
is a Hausdorff compact space,
is a continuous mapping and
τ
α
some convex and lower semicontinuous functional defined on the set
of all Borel probability and
α
-invariant measures on
X
. In other words
is the Legendre– Fenchel conjugate of ln
r
(
e
φ
T
α
). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form
,
. We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln
r
(
A
φ
,
c
) considering it firstly depending on the function
φ
and the variable
c
and secondly depending only on the function
φ
, by fixing
c
.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-009-0023-6</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Entropy ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Polynomials ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.373-381</ispartof><rights>Birkhäuser Verlag Basel/Switzerland 2009</rights><rights>Springer Basel AG 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</citedby><cites>FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-009-0023-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-009-0023-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ostaszewska, Urszula</creatorcontrib><creatorcontrib>Zajkowski, Krzysztof</creatorcontrib><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>For the spectral radius of weighted composition operators with positive weight
e
φ
T
α
,
, acting in the spaces
L
p
(
X
,
μ
) the following variational principle holds
where
X
is a Hausdorff compact space,
is a continuous mapping and
τ
α
some convex and lower semicontinuous functional defined on the set
of all Borel probability and
α
-invariant measures on
X
. In other words
is the Legendre– Fenchel conjugate of ln
r
(
e
φ
T
α
). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form
,
. We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln
r
(
A
φ
,
c
) considering it firstly depending on the function
φ
and the variable
c
and secondly depending only on the function
φ
, by fixing
c
.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Entropy</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Polynomials</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtKxDAUDaLg-PgAd8V9NY-mTZYyOCoMuNF1SNObmQ5tUpMOOjv_wT_0S0yp4MoLl_s651w4CF0RfEMwrm4jSVHlGMuUlOXlEVoQXtFcUkGOU88EzwmV9BSdxbjDOLEKvEB2DRtwTYDvz68VOLOFLhuDdtH60GfeZuMWsjiAScsug4_BO3DjdBh8d3C-b3UXp_Ed2s12hCYzvh98bMfWu8wPEPToQ7xAJzYB4fK3nqPX1f3L8jFfPz88Le_WuWGEj7mm2tZlg4lgVtS4KiQWzJQltwIEplqWNZc1VLqkujGsII1pSLoBk4ZKbtk5up51h-Df9hBHtfP74NJLJYqqqLjgOIHIDDLBxxjAqiG0vQ4HRbCa3FSzmyq5qSY3VZk4dObEhHUbCH_C_5N-APsSerE</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ostaszewska, Urszula</creator><creator>Zajkowski, Krzysztof</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</title><author>Ostaszewska, Urszula ; Zajkowski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-a2afb6d0183f8b0749083c665f8e802a96b59be7a62adc341dcd1f8ee39c295f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Entropy</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Polynomials</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostaszewska, Urszula</creatorcontrib><creatorcontrib>Zajkowski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostaszewska, Urszula</au><au>Zajkowski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>373</spage><epage>381</epage><pages>373-381</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>For the spectral radius of weighted composition operators with positive weight
e
φ
T
α
,
, acting in the spaces
L
p
(
X
,
μ
) the following variational principle holds
where
X
is a Hausdorff compact space,
is a continuous mapping and
τ
α
some convex and lower semicontinuous functional defined on the set
of all Borel probability and
α
-invariant measures on
X
. In other words
is the Legendre– Fenchel conjugate of ln
r
(
e
φ
T
α
). In this paper we consider the polynomials with positive coefficients of weighted composition operator of the form
,
. We derive two formulas on the Legendre–Fenchel transform of the spectral exponent ln
r
(
A
φ
,
c
) considering it firstly depending on the function
φ
and the variable
c
and secondly depending only on the function
φ
, by fixing
c
.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s11117-009-0023-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.373-381 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_847475850 |
source | Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization Econometrics Entropy Fourier Analysis Mathematics Mathematics and Statistics Operator Theory Polynomials Potential Theory |
title | Legendre–Fenchel transform of the spectral exponent of polynomials of weighted composition operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Legendre%E2%80%93Fenchel%20transform%20of%20the%20spectral%20exponent%20of%20polynomials%20of%20weighted%20composition%20operators&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ostaszewska,%20Urszula&rft.date=2010-09-01&rft.volume=14&rft.issue=3&rft.spage=373&rft.epage=381&rft.pages=373-381&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-009-0023-6&rft_dat=%3Cproquest_cross%3E2250126511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847475850&rft_id=info:pmid/&rfr_iscdi=true |