Neural-Network Security-Boundary Constrained Optimal Power Flow

This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2011-02, Vol.26 (1), p.63-72
Hauptverfasser: Gutierrez-Martinez, V J, Cañizares, Claudio A, Fuerte-Esquivel, C R, Pizano-Martinez, A, Xueping Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 63
container_title IEEE transactions on power systems
container_volume 26
creator Gutierrez-Martinez, V J
Cañizares, Claudio A
Fuerte-Esquivel, C R
Pizano-Martinez, A
Xueping Gu
description This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.
doi_str_mv 10.1109/TPWRS.2010.2050344
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_846937185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5475354</ieee_id><sourcerecordid>861543299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</originalsourceid><addsrcrecordid>eNpdkE1PwjAYxxujiYh-Ab0sXjwN-057MkpETQgQwXhsuu1ZMhwrtlsI394ixIOn5kl__-flh9A1wQNCsL5fzj_fFwOKY02xwIzzE9QjQqgUy6E-RT2slEiVFvgcXYSwwhjL-NFDD1PovK3TKbRb57-SBeSdr9pd-uS6prB-l4xcE1pvqwaKZLZpq7Wtk7nbgk_GtdteorPS1gGujm8ffYyfl6PXdDJ7eRs9TtKcUdmmOitJUTJJcpFrUtCSU2KpFlwUoCQtGaYClJaSSZVxVlI7JFmmM64sp4LlrI_uDn033n13EFqzrkIOdW0bcF0wShLBGdU6krf_yJXrfBOXM4pLzYZEiQjRA5R7F4KH0mx8vMzvDMFmb9T8GjV7o-ZoNIZuDqEKAP4Cgg8Fi7N_AKJncRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846937185</pqid></control><display><type>article</type><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</creator><creatorcontrib>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</creatorcontrib><description>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2010.2050344</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Electric power generation ; Electricity supply industry ; Load flow ; Mathematical models ; Neural network ; Neural networks ; optimal power flow ; Optimization ; Power system modeling ; Power system security ; Power system stability ; Proposals ; Representations ; Security ; Studies ; Time domain analysis ; Voltage ; Voltage-controlled oscillators</subject><ispartof>IEEE transactions on power systems, 2011-02, Vol.26 (1), p.63-72</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</citedby><cites>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5475354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5475354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gutierrez-Martinez, V J</creatorcontrib><creatorcontrib>Cañizares, Claudio A</creatorcontrib><creatorcontrib>Fuerte-Esquivel, C R</creatorcontrib><creatorcontrib>Pizano-Martinez, A</creatorcontrib><creatorcontrib>Xueping Gu</creatorcontrib><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Electric power generation</subject><subject>Electricity supply industry</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Power system modeling</subject><subject>Power system security</subject><subject>Power system stability</subject><subject>Proposals</subject><subject>Representations</subject><subject>Security</subject><subject>Studies</subject><subject>Time domain analysis</subject><subject>Voltage</subject><subject>Voltage-controlled oscillators</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwjAYxxujiYh-Ab0sXjwN-057MkpETQgQwXhsuu1ZMhwrtlsI394ixIOn5kl__-flh9A1wQNCsL5fzj_fFwOKY02xwIzzE9QjQqgUy6E-RT2slEiVFvgcXYSwwhjL-NFDD1PovK3TKbRb57-SBeSdr9pd-uS6prB-l4xcE1pvqwaKZLZpq7Wtk7nbgk_GtdteorPS1gGujm8ffYyfl6PXdDJ7eRs9TtKcUdmmOitJUTJJcpFrUtCSU2KpFlwUoCQtGaYClJaSSZVxVlI7JFmmM64sp4LlrI_uDn033n13EFqzrkIOdW0bcF0wShLBGdU6krf_yJXrfBOXM4pLzYZEiQjRA5R7F4KH0mx8vMzvDMFmb9T8GjV7o-ZoNIZuDqEKAP4Cgg8Fi7N_AKJncRM</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Gutierrez-Martinez, V J</creator><creator>Cañizares, Claudio A</creator><creator>Fuerte-Esquivel, C R</creator><creator>Pizano-Martinez, A</creator><creator>Xueping Gu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201102</creationdate><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><author>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Electric power generation</topic><topic>Electricity supply industry</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Power system modeling</topic><topic>Power system security</topic><topic>Power system stability</topic><topic>Proposals</topic><topic>Representations</topic><topic>Security</topic><topic>Studies</topic><topic>Time domain analysis</topic><topic>Voltage</topic><topic>Voltage-controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez-Martinez, V J</creatorcontrib><creatorcontrib>Cañizares, Claudio A</creatorcontrib><creatorcontrib>Fuerte-Esquivel, C R</creatorcontrib><creatorcontrib>Pizano-Martinez, A</creatorcontrib><creatorcontrib>Xueping Gu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutierrez-Martinez, V J</au><au>Cañizares, Claudio A</au><au>Fuerte-Esquivel, C R</au><au>Pizano-Martinez, A</au><au>Xueping Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network Security-Boundary Constrained Optimal Power Flow</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-02</date><risdate>2011</risdate><volume>26</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2010.2050344</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2011-02, Vol.26 (1), p.63-72
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_846937185
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Back propagation
Electric power generation
Electricity supply industry
Load flow
Mathematical models
Neural network
Neural networks
optimal power flow
Optimization
Power system modeling
Power system security
Power system stability
Proposals
Representations
Security
Studies
Time domain analysis
Voltage
Voltage-controlled oscillators
title Neural-Network Security-Boundary Constrained Optimal Power Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network%20Security-Boundary%20Constrained%20Optimal%20Power%20Flow&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Gutierrez-Martinez,%20V%20J&rft.date=2011-02&rft.volume=26&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2010.2050344&rft_dat=%3Cproquest_RIE%3E861543299%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=846937185&rft_id=info:pmid/&rft_ieee_id=5475354&rfr_iscdi=true