Neural-Network Security-Boundary Constrained Optimal Power Flow
This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system&...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2011-02, Vol.26 (1), p.63-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | IEEE transactions on power systems |
container_volume | 26 |
creator | Gutierrez-Martinez, V J Cañizares, Claudio A Fuerte-Esquivel, C R Pizano-Martinez, A Xueping Gu |
description | This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets. |
doi_str_mv | 10.1109/TPWRS.2010.2050344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_846937185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5475354</ieee_id><sourcerecordid>861543299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</originalsourceid><addsrcrecordid>eNpdkE1PwjAYxxujiYh-Ab0sXjwN-057MkpETQgQwXhsuu1ZMhwrtlsI394ixIOn5kl__-flh9A1wQNCsL5fzj_fFwOKY02xwIzzE9QjQqgUy6E-RT2slEiVFvgcXYSwwhjL-NFDD1PovK3TKbRb57-SBeSdr9pd-uS6prB-l4xcE1pvqwaKZLZpq7Wtk7nbgk_GtdteorPS1gGujm8ffYyfl6PXdDJ7eRs9TtKcUdmmOitJUTJJcpFrUtCSU2KpFlwUoCQtGaYClJaSSZVxVlI7JFmmM64sp4LlrI_uDn033n13EFqzrkIOdW0bcF0wShLBGdU6krf_yJXrfBOXM4pLzYZEiQjRA5R7F4KH0mx8vMzvDMFmb9T8GjV7o-ZoNIZuDqEKAP4Cgg8Fi7N_AKJncRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846937185</pqid></control><display><type>article</type><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</creator><creatorcontrib>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</creatorcontrib><description>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2010.2050344</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Electric power generation ; Electricity supply industry ; Load flow ; Mathematical models ; Neural network ; Neural networks ; optimal power flow ; Optimization ; Power system modeling ; Power system security ; Power system stability ; Proposals ; Representations ; Security ; Studies ; Time domain analysis ; Voltage ; Voltage-controlled oscillators</subject><ispartof>IEEE transactions on power systems, 2011-02, Vol.26 (1), p.63-72</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</citedby><cites>FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5475354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5475354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gutierrez-Martinez, V J</creatorcontrib><creatorcontrib>Cañizares, Claudio A</creatorcontrib><creatorcontrib>Fuerte-Esquivel, C R</creatorcontrib><creatorcontrib>Pizano-Martinez, A</creatorcontrib><creatorcontrib>Xueping Gu</creatorcontrib><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Electric power generation</subject><subject>Electricity supply industry</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Power system modeling</subject><subject>Power system security</subject><subject>Power system stability</subject><subject>Proposals</subject><subject>Representations</subject><subject>Security</subject><subject>Studies</subject><subject>Time domain analysis</subject><subject>Voltage</subject><subject>Voltage-controlled oscillators</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwjAYxxujiYh-Ab0sXjwN-057MkpETQgQwXhsuu1ZMhwrtlsI394ixIOn5kl__-flh9A1wQNCsL5fzj_fFwOKY02xwIzzE9QjQqgUy6E-RT2slEiVFvgcXYSwwhjL-NFDD1PovK3TKbRb57-SBeSdr9pd-uS6prB-l4xcE1pvqwaKZLZpq7Wtk7nbgk_GtdteorPS1gGujm8ffYyfl6PXdDJ7eRs9TtKcUdmmOitJUTJJcpFrUtCSU2KpFlwUoCQtGaYClJaSSZVxVlI7JFmmM64sp4LlrI_uDn033n13EFqzrkIOdW0bcF0wShLBGdU6krf_yJXrfBOXM4pLzYZEiQjRA5R7F4KH0mx8vMzvDMFmb9T8GjV7o-ZoNIZuDqEKAP4Cgg8Fi7N_AKJncRM</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Gutierrez-Martinez, V J</creator><creator>Cañizares, Claudio A</creator><creator>Fuerte-Esquivel, C R</creator><creator>Pizano-Martinez, A</creator><creator>Xueping Gu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201102</creationdate><title>Neural-Network Security-Boundary Constrained Optimal Power Flow</title><author>Gutierrez-Martinez, V J ; Cañizares, Claudio A ; Fuerte-Esquivel, C R ; Pizano-Martinez, A ; Xueping Gu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9bf1df361c5c91d2f421a29545de862f3025e8966368b43f2a71bb9b48a4253c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Electric power generation</topic><topic>Electricity supply industry</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Power system modeling</topic><topic>Power system security</topic><topic>Power system stability</topic><topic>Proposals</topic><topic>Representations</topic><topic>Security</topic><topic>Studies</topic><topic>Time domain analysis</topic><topic>Voltage</topic><topic>Voltage-controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez-Martinez, V J</creatorcontrib><creatorcontrib>Cañizares, Claudio A</creatorcontrib><creatorcontrib>Fuerte-Esquivel, C R</creatorcontrib><creatorcontrib>Pizano-Martinez, A</creatorcontrib><creatorcontrib>Xueping Gu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutierrez-Martinez, V J</au><au>Cañizares, Claudio A</au><au>Fuerte-Esquivel, C R</au><au>Pizano-Martinez, A</au><au>Xueping Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network Security-Boundary Constrained Optimal Power Flow</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-02</date><risdate>2011</risdate><volume>26</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a new approach to model stability and security constraints in optimal power flow (OPF) problems based on a neural network (NN) representation of the system security boundary (SB). The novelty of this proposal is that a closed form, differentiable function derived from the system's SB is used to represent security constraints in an OPF model. The procedure involves two main steps: First, an NN representation of the SB is obtained based on back-propagation neural network (BPNN) training. Second, a differentiable mapping function extracted from the BPNN is used to directly incorporate this function as a constraint in the OPF model. This approach ensures that the operating points resulting from the OPF solution process are within a feasible and secure region, whose limits are better represented using the proposed technique compared to typical security-constrained OPF models. The effectiveness and feasibility of the proposed approach is demonstrated through the implementation, as well as testing and comparison using the IEEE two-area and 118-bus benchmark systems, of an optimal dispatch technique that guarantees system security in the context of competitive electricity markets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2010.2050344</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2011-02, Vol.26 (1), p.63-72 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_846937185 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Back propagation Electric power generation Electricity supply industry Load flow Mathematical models Neural network Neural networks optimal power flow Optimization Power system modeling Power system security Power system stability Proposals Representations Security Studies Time domain analysis Voltage Voltage-controlled oscillators |
title | Neural-Network Security-Boundary Constrained Optimal Power Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network%20Security-Boundary%20Constrained%20Optimal%20Power%20Flow&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Gutierrez-Martinez,%20V%20J&rft.date=2011-02&rft.volume=26&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2010.2050344&rft_dat=%3Cproquest_RIE%3E861543299%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=846937185&rft_id=info:pmid/&rft_ieee_id=5475354&rfr_iscdi=true |