Congruences for the Andrews spt function
Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli $5\leq \ell \leq 37$ in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133–142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1–29]. We exhibit unexpectedly simple congruences f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (2), p.473-476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 2 |
container_start_page | 473 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Ono, Ken Andrews, George E. |
description | Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli $5\leq \ell \leq 37$ in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133–142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1–29]. We exhibit unexpectedly simple congruences for all $\ell \geq 5$ . Confirming a conjecture of Garvan, we show that if $\ell \geq 5$ is prime and $({\textstyle\frac{-\delta}{\ell}})=1$ , then $spt[{\textstyle\frac{\ell ^{2}(\ell n+\delta)+1}{24}}]\equiv 0$ ( ${\rm mod}\ \ell $ ). This congruence gives $(\ell -1)/2$ arithmetic progressions modulo $\ell ^{3}$ which support a mod $\ell $ congruence. This result follows from the surprising fact that the reduction of a certain mock theta function modulo $\ell $ , for every $\ell \geq 5$ , is an eigenform of the Hecke operator $T(\ell ^{2})$ . |
doi_str_mv | 10.1073/pnas.1015339107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_840187686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25770805</jstor_id><sourcerecordid>25770805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d67375bb5db689d39ad4566bbbdb424b89ed075bc9c4d1875f08ba8e483320bc3</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWh9nT8riRS-rk8dukotQii8QvOg5bB6rW9qkJruK_70pVqueMmR-38c3MwgdYjjHwOnFwjcpV7iiVOaPDTTCIHFZMwmbaARAeCkYYTtoN6UpAMhKwDbaIRhzzigZobNJ8M9xcN64VLQhFv2LK8beRveeirToi3bwpu-C30dbbTNL7mD17qGn66vHyW15_3BzNxnfl4ZK2pe25pRXWldW10JaKhvLqrrWWludg2ghnYUMGGmYxYJXLQjdCMcEpQS0oXvo8st3Mei5s8b5PjYztYjdvIkfKjSd-tvx3Yt6Dm-KAsmLkNngdGUQw-vgUq_mXTJuNmu8C0NSgkqOCWE0kyf_yGkYos_TKcEgh6tFnaGLL8jEkFJ07U8UDGp5A7W8gVrfICuOf0_ww38vPQNHK2CpXNsJRRTjdN2fpj7Etb7iHARU9BOa6JV6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840187686</pqid></control><display><type>article</type><title>Congruences for the Andrews spt function</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ono, Ken ; Andrews, George E.</creator><creatorcontrib>Ono, Ken ; Andrews, George E.</creatorcontrib><description>Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli $5\leq \ell \leq 37$ in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133–142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1–29]. We exhibit unexpectedly simple congruences for all $\ell \geq 5$ . Confirming a conjecture of Garvan, we show that if $\ell \geq 5$ is prime and $({\textstyle\frac{-\delta}{\ell}})=1$ , then $spt[{\textstyle\frac{\ell ^{2}(\ell n+\delta)+1}{24}}]\equiv 0$ ( ${\rm mod}\ \ell $ ). This congruence gives $(\ell -1)/2$ arithmetic progressions modulo $\ell ^{3}$ which support a mod $\ell $ congruence. This result follows from the surprising fact that the reduction of a certain mock theta function modulo $\ell $ , for every $\ell \geq 5$ , is an eigenform of the Hecke operator $T(\ell ^{2})$ .</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1015339107</identifier><identifier>PMID: 21177432</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Mathematical congruence ; Mathematical functions ; Mathematics ; Number theory ; Physical Sciences ; Research design</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.473-476</ispartof><rights>Copyright National Academy of Sciences Jan 11, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d67375bb5db689d39ad4566bbbdb424b89ed075bc9c4d1875f08ba8e483320bc3</citedby><cites>FETCH-LOGICAL-c393t-d67375bb5db689d39ad4566bbbdb424b89ed075bc9c4d1875f08ba8e483320bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25770805$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25770805$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Ken</creatorcontrib><creatorcontrib>Andrews, George E.</creatorcontrib><title>Congruences for the Andrews spt function</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli $5\leq \ell \leq 37$ in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133–142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1–29]. We exhibit unexpectedly simple congruences for all $\ell \geq 5$ . Confirming a conjecture of Garvan, we show that if $\ell \geq 5$ is prime and $({\textstyle\frac{-\delta}{\ell}})=1$ , then $spt[{\textstyle\frac{\ell ^{2}(\ell n+\delta)+1}{24}}]\equiv 0$ ( ${\rm mod}\ \ell $ ). This congruence gives $(\ell -1)/2$ arithmetic progressions modulo $\ell ^{3}$ which support a mod $\ell $ congruence. This result follows from the surprising fact that the reduction of a certain mock theta function modulo $\ell $ , for every $\ell \geq 5$ , is an eigenform of the Hecke operator $T(\ell ^{2})$ .</description><subject>Mathematical congruence</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Physical Sciences</subject><subject>Research design</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkctLAzEQxoMoWh9nT8riRS-rk8dukotQii8QvOg5bB6rW9qkJruK_70pVqueMmR-38c3MwgdYjjHwOnFwjcpV7iiVOaPDTTCIHFZMwmbaARAeCkYYTtoN6UpAMhKwDbaIRhzzigZobNJ8M9xcN64VLQhFv2LK8beRveeirToi3bwpu-C30dbbTNL7mD17qGn66vHyW15_3BzNxnfl4ZK2pe25pRXWldW10JaKhvLqrrWWludg2ghnYUMGGmYxYJXLQjdCMcEpQS0oXvo8st3Mei5s8b5PjYztYjdvIkfKjSd-tvx3Yt6Dm-KAsmLkNngdGUQw-vgUq_mXTJuNmu8C0NSgkqOCWE0kyf_yGkYos_TKcEgh6tFnaGLL8jEkFJ07U8UDGp5A7W8gVrfICuOf0_ww38vPQNHK2CpXNsJRRTjdN2fpj7Etb7iHARU9BOa6JV6</recordid><startdate>20110111</startdate><enddate>20110111</enddate><creator>Ono, Ken</creator><creator>Andrews, George E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110111</creationdate><title>Congruences for the Andrews spt function</title><author>Ono, Ken ; Andrews, George E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d67375bb5db689d39ad4566bbbdb424b89ed075bc9c4d1875f08ba8e483320bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematical congruence</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Physical Sciences</topic><topic>Research design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Ken</creatorcontrib><creatorcontrib>Andrews, George E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Ken</au><au>Andrews, George E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Congruences for the Andrews spt function</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-01-11</date><risdate>2011</risdate><volume>108</volume><issue>2</issue><spage>473</spage><epage>476</epage><pages>473-476</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli $5\leq \ell \leq 37$ in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133–142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1–29]. We exhibit unexpectedly simple congruences for all $\ell \geq 5$ . Confirming a conjecture of Garvan, we show that if $\ell \geq 5$ is prime and $({\textstyle\frac{-\delta}{\ell}})=1$ , then $spt[{\textstyle\frac{\ell ^{2}(\ell n+\delta)+1}{24}}]\equiv 0$ ( ${\rm mod}\ \ell $ ). This congruence gives $(\ell -1)/2$ arithmetic progressions modulo $\ell ^{3}$ which support a mod $\ell $ congruence. This result follows from the surprising fact that the reduction of a certain mock theta function modulo $\ell $ , for every $\ell \geq 5$ , is an eigenform of the Hecke operator $T(\ell ^{2})$ .</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21177432</pmid><doi>10.1073/pnas.1015339107</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.473-476 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_840187686 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Mathematical congruence Mathematical functions Mathematics Number theory Physical Sciences Research design |
title | Congruences for the Andrews spt function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Congruences%20for%20the%20Andrews%20spt%20function&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ono,%20Ken&rft.date=2011-01-11&rft.volume=108&rft.issue=2&rft.spage=473&rft.epage=476&rft.pages=473-476&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1015339107&rft_dat=%3Cjstor_proqu%3E25770805%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840187686&rft_id=info:pmid/21177432&rft_jstor_id=25770805&rfr_iscdi=true |