A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging
A flow-sensitive nuclear magnetic resonance (NMR) microimaging technique was applied to measure directly the in-vivo water flow in 6-d-old castor bean seedlings. The achieved in-plane resolution of the technique allowed discrimination between xylem and phloem water flow. Both the xylem- and the phlo...
Gespeichert in:
Veröffentlicht in: | Planta 1997-01, Vol.201 (1), p.53-63 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Planta |
container_volume | 201 |
creator | Koeckenberger, W Pope, J.M Xia, Y Jeffrey, K.R Komor, E Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie) |
description | A flow-sensitive nuclear magnetic resonance (NMR) microimaging technique was applied to measure directly the in-vivo water flow in 6-d-old castor bean seedlings. The achieved in-plane resolution of the technique allowed discrimination between xylem and phloem water flow. Both the xylem- and the phloem-average flow velocities in the intact seedling could be quantified. Furthermore, the total conductive cross-sectional area of the xylem vessels and the phloem sieve elements could be determined using the non-invasive and non-destructive NMR microimaging technique. Hence, it was possible to calculate the in-vivo volume flow rates for both xylem and phloem water flow. Our non-destructive technique showed that previously used methods to measure phloem water flow affected the flow rate itself. In the intact seedlings we found values of 16.6 μl·h-1, two fold lower than those previously estimated from phloem exudation rates. Finally, our results demonstrate for the first time that water is internally circulated between phloem and xylem, and that water flow within the xylem is maintained by this internally circulated water, even in the absence of any significant transpiration or evaporation. |
doi_str_mv | 10.1007/BF01258680 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_820877843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23384930</jstor_id><sourcerecordid>23384930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-197517485fdc891dadd190bfe360efa9aaab397b08849c4274d97e9f6fcef41b3</originalsourceid><addsrcrecordid>eNpFkM1rGzEQxUVpoK7TS4-Fgig5BTaRVtqVdHS-A4Fc0vMyqx25a9aSK63t-JD_PTIOsS4aeD-9eXqE_OTsgjOmLq_uGC8rXWv2hUy4FGVRMqm_kgljeWZGVN_I95QWjGVRqQl5m1EffNH7DaR-g3SJkNYRl-hHGhxd_RsCLin4jr7uhjxtYcRI3RC2tPfUQhpDpC2CpwmxG3o_T7TdUb-2A0KkS5h7HHtLI6bgwdu8obcx9FnI7Ck5cTAk_PFxT8nfu9uX64fi6fn-8Xr2VFhR1mPBjaq4krpyndWGd9B13LDWoagZOjAA0AqjWqa1NFaWSnZGoXG1s-gkb8WU_Dn4rmL4v8Y0Nouwjj6vbHTJtFJaigydH6CcL6WIrlnFnDPuGs6afbvNsd0Mn304QrIwuJj_1qfPF2WVj64y9vuALfZFHWUhclKxt_l10B2EBuYxW9zcGnUvJa_FO-WBjM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820877843</pqid></control><display><type>article</type><title>A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Koeckenberger, W ; Pope, J.M ; Xia, Y ; Jeffrey, K.R ; Komor, E ; Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</creator><creatorcontrib>Koeckenberger, W ; Pope, J.M ; Xia, Y ; Jeffrey, K.R ; Komor, E ; Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</creatorcontrib><description>A flow-sensitive nuclear magnetic resonance (NMR) microimaging technique was applied to measure directly the in-vivo water flow in 6-d-old castor bean seedlings. The achieved in-plane resolution of the technique allowed discrimination between xylem and phloem water flow. Both the xylem- and the phloem-average flow velocities in the intact seedling could be quantified. Furthermore, the total conductive cross-sectional area of the xylem vessels and the phloem sieve elements could be determined using the non-invasive and non-destructive NMR microimaging technique. Hence, it was possible to calculate the in-vivo volume flow rates for both xylem and phloem water flow. Our non-destructive technique showed that previously used methods to measure phloem water flow affected the flow rate itself. In the intact seedlings we found values of 16.6 μl·h-1, two fold lower than those previously estimated from phloem exudation rates. Finally, our results demonstrate for the first time that water is internally circulated between phloem and xylem, and that water flow within the xylem is maintained by this internally circulated water, even in the absence of any significant transpiration or evaporation.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/BF01258680</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>AGUA ; Average flow ; Biological and medical sciences ; Cotyledons ; EAU ; Endosperm ; Evaporation ; FISIOLOGIA VEGETAL ; FLOEMA ; Flow rates ; Flow velocity ; Fundamental and applied biological sciences. Psychology ; Hypocotyls ; METHODE ; METHODS ; METODOS ; NMR ; Nuclear magnetic resonance ; PHLOEM ; PHLOEME ; PHYSIOLOGIE VEGETALE ; PLANT PHYSIOLOGY ; Plant physiology and development ; PLANT WATER RELATIONS ; PLANTULAS ; PLANTULE ; RELACIONES PLANTA AGUA ; RELATION PLANTE EAU ; RICINUS COMMUNIS ; SEEDLINGS ; Sieve tubes ; TECHNIQUE DES TRACEURS ; TECNICAS DE TRAZADORES ; TRACER TECHNIQUES ; TRANSPIRACION ; TRANSPIRATION ; Wasserhaushalt (Pflanze) ; WATER ; Water and solutes. Absorption, translocation and permeability ; Water flow ; XILEMA ; XYLEM ; XYLEME</subject><ispartof>Planta, 1997-01, Vol.201 (1), p.53-63</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><rights>Springer-Verlag 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-197517485fdc891dadd190bfe360efa9aaab397b08849c4274d97e9f6fcef41b3</citedby><cites>FETCH-LOGICAL-c326t-197517485fdc891dadd190bfe360efa9aaab397b08849c4274d97e9f6fcef41b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23384930$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23384930$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2555585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koeckenberger, W</creatorcontrib><creatorcontrib>Pope, J.M</creatorcontrib><creatorcontrib>Xia, Y</creatorcontrib><creatorcontrib>Jeffrey, K.R</creatorcontrib><creatorcontrib>Komor, E</creatorcontrib><creatorcontrib>Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</creatorcontrib><title>A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging</title><title>Planta</title><description>A flow-sensitive nuclear magnetic resonance (NMR) microimaging technique was applied to measure directly the in-vivo water flow in 6-d-old castor bean seedlings. The achieved in-plane resolution of the technique allowed discrimination between xylem and phloem water flow. Both the xylem- and the phloem-average flow velocities in the intact seedling could be quantified. Furthermore, the total conductive cross-sectional area of the xylem vessels and the phloem sieve elements could be determined using the non-invasive and non-destructive NMR microimaging technique. Hence, it was possible to calculate the in-vivo volume flow rates for both xylem and phloem water flow. Our non-destructive technique showed that previously used methods to measure phloem water flow affected the flow rate itself. In the intact seedlings we found values of 16.6 μl·h-1, two fold lower than those previously estimated from phloem exudation rates. Finally, our results demonstrate for the first time that water is internally circulated between phloem and xylem, and that water flow within the xylem is maintained by this internally circulated water, even in the absence of any significant transpiration or evaporation.</description><subject>AGUA</subject><subject>Average flow</subject><subject>Biological and medical sciences</subject><subject>Cotyledons</subject><subject>EAU</subject><subject>Endosperm</subject><subject>Evaporation</subject><subject>FISIOLOGIA VEGETAL</subject><subject>FLOEMA</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hypocotyls</subject><subject>METHODE</subject><subject>METHODS</subject><subject>METODOS</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>PHLOEM</subject><subject>PHLOEME</subject><subject>PHYSIOLOGIE VEGETALE</subject><subject>PLANT PHYSIOLOGY</subject><subject>Plant physiology and development</subject><subject>PLANT WATER RELATIONS</subject><subject>PLANTULAS</subject><subject>PLANTULE</subject><subject>RELACIONES PLANTA AGUA</subject><subject>RELATION PLANTE EAU</subject><subject>RICINUS COMMUNIS</subject><subject>SEEDLINGS</subject><subject>Sieve tubes</subject><subject>TECHNIQUE DES TRACEURS</subject><subject>TECNICAS DE TRAZADORES</subject><subject>TRACER TECHNIQUES</subject><subject>TRANSPIRACION</subject><subject>TRANSPIRATION</subject><subject>Wasserhaushalt (Pflanze)</subject><subject>WATER</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><subject>Water flow</subject><subject>XILEMA</subject><subject>XYLEM</subject><subject>XYLEME</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkM1rGzEQxUVpoK7TS4-Fgig5BTaRVtqVdHS-A4Fc0vMyqx25a9aSK63t-JD_PTIOsS4aeD-9eXqE_OTsgjOmLq_uGC8rXWv2hUy4FGVRMqm_kgljeWZGVN_I95QWjGVRqQl5m1EffNH7DaR-g3SJkNYRl-hHGhxd_RsCLin4jr7uhjxtYcRI3RC2tPfUQhpDpC2CpwmxG3o_T7TdUb-2A0KkS5h7HHtLI6bgwdu8obcx9FnI7Ck5cTAk_PFxT8nfu9uX64fi6fn-8Xr2VFhR1mPBjaq4krpyndWGd9B13LDWoagZOjAA0AqjWqa1NFaWSnZGoXG1s-gkb8WU_Dn4rmL4v8Y0Nouwjj6vbHTJtFJaigydH6CcL6WIrlnFnDPuGs6afbvNsd0Mn304QrIwuJj_1qfPF2WVj64y9vuALfZFHWUhclKxt_l10B2EBuYxW9zcGnUvJa_FO-WBjM4</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Koeckenberger, W</creator><creator>Pope, J.M</creator><creator>Xia, Y</creator><creator>Jeffrey, K.R</creator><creator>Komor, E</creator><creator>Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>19970101</creationdate><title>A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging</title><author>Koeckenberger, W ; Pope, J.M ; Xia, Y ; Jeffrey, K.R ; Komor, E ; Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-197517485fdc891dadd190bfe360efa9aaab397b08849c4274d97e9f6fcef41b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>AGUA</topic><topic>Average flow</topic><topic>Biological and medical sciences</topic><topic>Cotyledons</topic><topic>EAU</topic><topic>Endosperm</topic><topic>Evaporation</topic><topic>FISIOLOGIA VEGETAL</topic><topic>FLOEMA</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hypocotyls</topic><topic>METHODE</topic><topic>METHODS</topic><topic>METODOS</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>PHLOEM</topic><topic>PHLOEME</topic><topic>PHYSIOLOGIE VEGETALE</topic><topic>PLANT PHYSIOLOGY</topic><topic>Plant physiology and development</topic><topic>PLANT WATER RELATIONS</topic><topic>PLANTULAS</topic><topic>PLANTULE</topic><topic>RELACIONES PLANTA AGUA</topic><topic>RELATION PLANTE EAU</topic><topic>RICINUS COMMUNIS</topic><topic>SEEDLINGS</topic><topic>Sieve tubes</topic><topic>TECHNIQUE DES TRACEURS</topic><topic>TECNICAS DE TRAZADORES</topic><topic>TRACER TECHNIQUES</topic><topic>TRANSPIRACION</topic><topic>TRANSPIRATION</topic><topic>Wasserhaushalt (Pflanze)</topic><topic>WATER</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><topic>Water flow</topic><topic>XILEMA</topic><topic>XYLEM</topic><topic>XYLEME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koeckenberger, W</creatorcontrib><creatorcontrib>Pope, J.M</creatorcontrib><creatorcontrib>Xia, Y</creatorcontrib><creatorcontrib>Jeffrey, K.R</creatorcontrib><creatorcontrib>Komor, E</creatorcontrib><creatorcontrib>Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koeckenberger, W</au><au>Pope, J.M</au><au>Xia, Y</au><au>Jeffrey, K.R</au><au>Komor, E</au><au>Callaghan, P.T. (Bayreuth Univ. (Germany). Pflanzenphysiologie)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging</atitle><jtitle>Planta</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>201</volume><issue>1</issue><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>A flow-sensitive nuclear magnetic resonance (NMR) microimaging technique was applied to measure directly the in-vivo water flow in 6-d-old castor bean seedlings. The achieved in-plane resolution of the technique allowed discrimination between xylem and phloem water flow. Both the xylem- and the phloem-average flow velocities in the intact seedling could be quantified. Furthermore, the total conductive cross-sectional area of the xylem vessels and the phloem sieve elements could be determined using the non-invasive and non-destructive NMR microimaging technique. Hence, it was possible to calculate the in-vivo volume flow rates for both xylem and phloem water flow. Our non-destructive technique showed that previously used methods to measure phloem water flow affected the flow rate itself. In the intact seedlings we found values of 16.6 μl·h-1, two fold lower than those previously estimated from phloem exudation rates. Finally, our results demonstrate for the first time that water is internally circulated between phloem and xylem, and that water flow within the xylem is maintained by this internally circulated water, even in the absence of any significant transpiration or evaporation.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><doi>10.1007/BF01258680</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 1997-01, Vol.201 (1), p.53-63 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_journals_820877843 |
source | Jstor Complete Legacy; SpringerLink Journals - AutoHoldings |
subjects | AGUA Average flow Biological and medical sciences Cotyledons EAU Endosperm Evaporation FISIOLOGIA VEGETAL FLOEMA Flow rates Flow velocity Fundamental and applied biological sciences. Psychology Hypocotyls METHODE METHODS METODOS NMR Nuclear magnetic resonance PHLOEM PHLOEME PHYSIOLOGIE VEGETALE PLANT PHYSIOLOGY Plant physiology and development PLANT WATER RELATIONS PLANTULAS PLANTULE RELACIONES PLANTA AGUA RELATION PLANTE EAU RICINUS COMMUNIS SEEDLINGS Sieve tubes TECHNIQUE DES TRACEURS TECNICAS DE TRAZADORES TRACER TECHNIQUES TRANSPIRACION TRANSPIRATION Wasserhaushalt (Pflanze) WATER Water and solutes. Absorption, translocation and permeability Water flow XILEMA XYLEM XYLEME |
title | A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-invasive%20measurement%20of%20phloem%20and%20xylem%20water%20flow%20in%20castor%20bean%20seedlings%20by%20nuclear%20magnetic%20resonance%20microimaging&rft.jtitle=Planta&rft.au=Koeckenberger,%20W&rft.date=1997-01-01&rft.volume=201&rft.issue=1&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/BF01258680&rft_dat=%3Cjstor_proqu%3E23384930%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820877843&rft_id=info:pmid/&rft_jstor_id=23384930&rfr_iscdi=true |