CHR(PRISM)-based probabilistic logic learning

PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming 2010-07, Vol.10 (4-6), p.433-447
Hauptverfasser: SNEYERS, JON, MEERT, WANNES, VENNEKENS, JOOST, KAMEYA, YOSHITAKA, SATO, TAISUKE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 4-6
container_start_page 433
container_title Theory and practice of logic programming
container_volume 10
creator SNEYERS, JON
MEERT, WANNES
VENNEKENS, JOOST
KAMEYA, YOSHITAKA
SATO, TAISUKE
description PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.
doi_str_mv 10.1017/S1471068410000207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_815297831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1471068410000207</cupid><sourcerecordid>2202539151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-c44232f77d0bc2382bde47ade419807b846b58887f37c0abd5adf7a2632f41103</originalsourceid><addsrcrecordid>eNp1UMFOwzAMjRBIjMEHcJs4wSFgJ2mTHVHF2KQh0AbnKmnSqlPXjqQ78PekbBIHhA_Plu33_GRCrhHuEVA-rFFIhFQJhBgM5AkZxVZCOSg8_amRDvNzchHCBgBTzsSI0Gy-un1bLdYvd9To4Oxk5zujTd3Uoa-LSdNVAzrt27qtLslZqZvgro55TD5mT-_ZnC5fnxfZ45IWXIieFkIwzkopLZiCccWMdULqCDhVII0SqUmUUrLksgBtbKJtKTWLlkqBCHxMbg660czn3oU-33R738aTucKETaXiGJfwsFT4LgTvynzn6632XzlCPjwl__OUyOFHjt4aX9vK_Sr_z_oGyMFgkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815297831</pqid></control><display><type>article</type><title>CHR(PRISM)-based probabilistic logic learning</title><source>Cambridge Journals</source><creator>SNEYERS, JON ; MEERT, WANNES ; VENNEKENS, JOOST ; KAMEYA, YOSHITAKA ; SATO, TAISUKE</creator><creatorcontrib>SNEYERS, JON ; MEERT, WANNES ; VENNEKENS, JOOST ; KAMEYA, YOSHITAKA ; SATO, TAISUKE</creatorcontrib><description>PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.</description><identifier>ISSN: 1471-0684</identifier><identifier>EISSN: 1475-3081</identifier><identifier>DOI: 10.1017/S1471068410000207</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Regular Papers</subject><ispartof>Theory and practice of logic programming, 2010-07, Vol.10 (4-6), p.433-447</ispartof><rights>Copyright © Cambridge University Press 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-c44232f77d0bc2382bde47ade419807b846b58887f37c0abd5adf7a2632f41103</citedby><cites>FETCH-LOGICAL-c344t-c44232f77d0bc2382bde47ade419807b846b58887f37c0abd5adf7a2632f41103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1471068410000207/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>SNEYERS, JON</creatorcontrib><creatorcontrib>MEERT, WANNES</creatorcontrib><creatorcontrib>VENNEKENS, JOOST</creatorcontrib><creatorcontrib>KAMEYA, YOSHITAKA</creatorcontrib><creatorcontrib>SATO, TAISUKE</creatorcontrib><title>CHR(PRISM)-based probabilistic logic learning</title><title>Theory and practice of logic programming</title><addtitle>Theory and Practice of Logic Programming</addtitle><description>PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.</description><subject>Regular Papers</subject><issn>1471-0684</issn><issn>1475-3081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMFOwzAMjRBIjMEHcJs4wSFgJ2mTHVHF2KQh0AbnKmnSqlPXjqQ78PekbBIHhA_Plu33_GRCrhHuEVA-rFFIhFQJhBgM5AkZxVZCOSg8_amRDvNzchHCBgBTzsSI0Gy-un1bLdYvd9To4Oxk5zujTd3Uoa-LSdNVAzrt27qtLslZqZvgro55TD5mT-_ZnC5fnxfZ45IWXIieFkIwzkopLZiCccWMdULqCDhVII0SqUmUUrLksgBtbKJtKTWLlkqBCHxMbg660czn3oU-33R738aTucKETaXiGJfwsFT4LgTvynzn6632XzlCPjwl__OUyOFHjt4aX9vK_Sr_z_oGyMFgkg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>SNEYERS, JON</creator><creator>MEERT, WANNES</creator><creator>VENNEKENS, JOOST</creator><creator>KAMEYA, YOSHITAKA</creator><creator>SATO, TAISUKE</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>201007</creationdate><title>CHR(PRISM)-based probabilistic logic learning</title><author>SNEYERS, JON ; MEERT, WANNES ; VENNEKENS, JOOST ; KAMEYA, YOSHITAKA ; SATO, TAISUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-c44232f77d0bc2382bde47ade419807b846b58887f37c0abd5adf7a2632f41103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Regular Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SNEYERS, JON</creatorcontrib><creatorcontrib>MEERT, WANNES</creatorcontrib><creatorcontrib>VENNEKENS, JOOST</creatorcontrib><creatorcontrib>KAMEYA, YOSHITAKA</creatorcontrib><creatorcontrib>SATO, TAISUKE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and practice of logic programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SNEYERS, JON</au><au>MEERT, WANNES</au><au>VENNEKENS, JOOST</au><au>KAMEYA, YOSHITAKA</au><au>SATO, TAISUKE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHR(PRISM)-based probabilistic logic learning</atitle><jtitle>Theory and practice of logic programming</jtitle><addtitle>Theory and Practice of Logic Programming</addtitle><date>2010-07</date><risdate>2010</risdate><volume>10</volume><issue>4-6</issue><spage>433</spage><epage>447</epage><pages>433-447</pages><issn>1471-0684</issn><eissn>1475-3081</eissn><abstract>PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1471068410000207</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1471-0684
ispartof Theory and practice of logic programming, 2010-07, Vol.10 (4-6), p.433-447
issn 1471-0684
1475-3081
language eng
recordid cdi_proquest_journals_815297831
source Cambridge Journals
subjects Regular Papers
title CHR(PRISM)-based probabilistic logic learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHR(PRISM)-based%20probabilistic%20logic%20learning&rft.jtitle=Theory%20and%20practice%20of%20logic%20programming&rft.au=SNEYERS,%20JON&rft.date=2010-07&rft.volume=10&rft.issue=4-6&rft.spage=433&rft.epage=447&rft.pages=433-447&rft.issn=1471-0684&rft.eissn=1475-3081&rft_id=info:doi/10.1017/S1471068410000207&rft_dat=%3Cproquest_cross%3E2202539151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815297831&rft_id=info:pmid/&rft_cupid=10_1017_S1471068410000207&rfr_iscdi=true