NMDA receptor, PKC and ERK prevent fos expression induced by the activation of group I metabotropic glutamate receptors in the spinal trigeminal subnucleus oralis
Fos, a protein product of immediate early gene c-fos, has been used as a marker for activation of nociceptive neurons in central nervous system including spinal trigeminal nucleus (Vsp). By noxious stimulation applied to orofacial area, the expression of Fos occurred in the Vsp pars oralis (Vo), the...
Gespeichert in:
Veröffentlicht in: | Molecules and cells 2010-11, Vol.30 (5), p.461-466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fos, a protein product of immediate early gene c-fos, has been used as a marker for activation of nociceptive neurons in central nervous system including spinal trigeminal nucleus (Vsp). By noxious stimulation applied to orofacial area, the expression of Fos occurred in the Vsp pars oralis (Vo), the subnucleus receiving inputs from trigeminal primary afferents that predominantly innervate intraoral receptive fields. The present study demonstrates that the in vitro activation of group I metabotropic glutamate receptors (mGluRs; mGluR1 and 5) by bath-application of their well-known agonist (S)-3,5-dihydroxyphenylglycine (DHPG) increased the number of Fos-expressing neurons in the Vo area. In addition, bath application of DHPG caused inward currents, a parameter of neuronal excitation, in the Vo neurons held at -70 mV in voltage-clamp mode of whole-cell recordings. In further experiments characterizing two phenomena, the increased Fos expression in the Vo was mediated by an additive activation of both mGluR1 and mGluR5, which required the activation of N-methyl-D-aspartate (NMDA) receptors, protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). In contrast, the inward currents were mediated only by mGluR1, but not by others. The data resulting from this in vitro study indicate that the DHPG-induced membrane depolarisation or neuronal excitation may be upstream to, or skip, the NMDA receptor, PKC and ERK pathways for the DHPG-induced Fos expression. |
---|---|
ISSN: | 1016-8478 0219-1032 |
DOI: | 10.1007/s10059-010-0140-x |