Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is depend...
Gespeichert in:
Veröffentlicht in: | Biometals 2010-04, Vol.23 (2), p.307-314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 307 |
container_title | Biometals |
container_volume | 23 |
creator | Otero, Lisandro H Beassoni, Paola R Lisa, Angela T Domenech, Carlos E |
description | Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg²⁺ or Zn²⁺. Mg²⁺ produced identical activation at pH 5.0 and 7.4, but Zn²⁺ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn²⁺ inhibited enzymatic activity even in the presence of saturating Mg²⁺ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg²⁺ and Zn²⁺ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg²⁺ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn²⁺ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [graphic removed] complex. |
doi_str_mv | 10.1007/s10534-010-9289-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_760891572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174595771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-d1bb7c5712413c3cd2e8555262406167f44f6ed6e8cb0de692c48d5192ea90fa3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhq2KSl0KD8AJq_fA2HHs-IgqWpAqgUR76cVynMnG1a69tZ1Ke-xj8BocOfIoPEmzpIgbh9FoRv_3jzQ_IW8YvGMA6n1m0NSiAgaV5q2u2BFZsUbxqlWqfkFWoKWsoBXihLzM-Q4AtAK5It-vkw3ZFx8DHVLc0uiKHbFPdkNLpAVL-juuMW7ncU-dnTJmWkak1hX_YP_QMVEfRt8tXt2e3oZfP34__qRxoF8zTn3cxmAztZimtQ8xW7obY54r7TdujBsf8Hlji834ihwPdpPx9XM_JTcXH6_PP1VXXy4_n3-4qhyXulQ96zrlGsW4YLWrXc-xbZqGSy5AMqkGIQaJvcTWddCj1NyJtm-Y5mg1DLY-JWeL7y7F-wlzMXdxSmE-aZSEVh--OIvYInIp5pxwMLvktzbtDQNzCMAsAZg5AHMIwLCZ4QuTZ21YY_pn_D_o7QINNhq7Tj6bm28cWA2sZUJoWT8BmfeX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760891572</pqid></control><display><type>article</type><title>Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase</title><source>SpringerLink Journals - AutoHoldings</source><creator>Otero, Lisandro H ; Beassoni, Paola R ; Lisa, Angela T ; Domenech, Carlos E</creator><creatorcontrib>Otero, Lisandro H ; Beassoni, Paola R ; Lisa, Angela T ; Domenech, Carlos E</creatorcontrib><description>Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg²⁺ or Zn²⁺. Mg²⁺ produced identical activation at pH 5.0 and 7.4, but Zn²⁺ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn²⁺ inhibited enzymatic activity even in the presence of saturating Mg²⁺ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg²⁺ and Zn²⁺ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg²⁺ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn²⁺ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [graphic removed] complex.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-010-9289-1</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Cations ; Cell Biology ; Enzymatic activity ; Hydrolysis ; Life Sciences ; Medicine/Public Health ; Microbiology ; Pharmacology/Toxicology ; Plant Physiology ; Zinc</subject><ispartof>Biometals, 2010-04, Vol.23 (2), p.307-314</ispartof><rights>Springer Science+Business Media, LLC. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-d1bb7c5712413c3cd2e8555262406167f44f6ed6e8cb0de692c48d5192ea90fa3</citedby><cites>FETCH-LOGICAL-c269t-d1bb7c5712413c3cd2e8555262406167f44f6ed6e8cb0de692c48d5192ea90fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-010-9289-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-010-9289-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Otero, Lisandro H</creatorcontrib><creatorcontrib>Beassoni, Paola R</creatorcontrib><creatorcontrib>Lisa, Angela T</creatorcontrib><creatorcontrib>Domenech, Carlos E</creatorcontrib><title>Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase</title><title>Biometals</title><addtitle>Biometals</addtitle><description>Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg²⁺ or Zn²⁺. Mg²⁺ produced identical activation at pH 5.0 and 7.4, but Zn²⁺ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn²⁺ inhibited enzymatic activity even in the presence of saturating Mg²⁺ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg²⁺ and Zn²⁺ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg²⁺ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn²⁺ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [graphic removed] complex.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cations</subject><subject>Cell Biology</subject><subject>Enzymatic activity</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Microbiology</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Zinc</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhq2KSl0KD8AJq_fA2HHs-IgqWpAqgUR76cVynMnG1a69tZ1Ke-xj8BocOfIoPEmzpIgbh9FoRv_3jzQ_IW8YvGMA6n1m0NSiAgaV5q2u2BFZsUbxqlWqfkFWoKWsoBXihLzM-Q4AtAK5It-vkw3ZFx8DHVLc0uiKHbFPdkNLpAVL-juuMW7ncU-dnTJmWkak1hX_YP_QMVEfRt8tXt2e3oZfP34__qRxoF8zTn3cxmAztZimtQ8xW7obY54r7TdujBsf8Hlji834ihwPdpPx9XM_JTcXH6_PP1VXXy4_n3-4qhyXulQ96zrlGsW4YLWrXc-xbZqGSy5AMqkGIQaJvcTWddCj1NyJtm-Y5mg1DLY-JWeL7y7F-wlzMXdxSmE-aZSEVh--OIvYInIp5pxwMLvktzbtDQNzCMAsAZg5AHMIwLCZ4QuTZ21YY_pn_D_o7QINNhq7Tj6bm28cWA2sZUJoWT8BmfeX_Q</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Otero, Lisandro H</creator><creator>Beassoni, Paola R</creator><creator>Lisa, Angela T</creator><creator>Domenech, Carlos E</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase</title><author>Otero, Lisandro H ; Beassoni, Paola R ; Lisa, Angela T ; Domenech, Carlos E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-d1bb7c5712413c3cd2e8555262406167f44f6ed6e8cb0de692c48d5192ea90fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cations</topic><topic>Cell Biology</topic><topic>Enzymatic activity</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Microbiology</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otero, Lisandro H</creatorcontrib><creatorcontrib>Beassoni, Paola R</creatorcontrib><creatorcontrib>Lisa, Angela T</creatorcontrib><creatorcontrib>Domenech, Carlos E</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otero, Lisandro H</au><au>Beassoni, Paola R</au><au>Lisa, Angela T</au><au>Domenech, Carlos E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>23</volume><issue>2</issue><spage>307</spage><epage>314</epage><pages>307-314</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg²⁺ or Zn²⁺. Mg²⁺ produced identical activation at pH 5.0 and 7.4, but Zn²⁺ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn²⁺ inhibited enzymatic activity even in the presence of saturating Mg²⁺ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg²⁺ and Zn²⁺ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg²⁺ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn²⁺ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [graphic removed] complex.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10534-010-9289-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2010-04, Vol.23 (2), p.307-314 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_journals_760891572 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Cations Cell Biology Enzymatic activity Hydrolysis Life Sciences Medicine/Public Health Microbiology Pharmacology/Toxicology Plant Physiology Zinc |
title | Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn²⁺ of Pseudomonas aeruginosa phosphorylcholine phosphatase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20octahedral%20to%20tetrahedral%20geometry%20causes%20the%20activation%20or%20inhibition%20by%20Zn%C2%B2%E2%81%BA%20of%20Pseudomonas%20aeruginosa%20phosphorylcholine%20phosphatase&rft.jtitle=Biometals&rft.au=Otero,%20Lisandro%20H&rft.date=2010-04-01&rft.volume=23&rft.issue=2&rft.spage=307&rft.epage=314&rft.pages=307-314&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-010-9289-1&rft_dat=%3Cproquest_cross%3E2174595771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760891572&rft_id=info:pmid/&rfr_iscdi=true |