An Alternative to Tikhonov Regularization for Linear Sampling Methods
The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2010-11, Vol.112 (2), p.171-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Acta applicandae mathematicae |
container_volume | 112 |
creator | Kim, K. Leem, K. H. Pelekanos, G. |
description | The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter. |
doi_str_mv | 10.1007/s10440-009-9558-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_757110444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158424691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLvgffSk-Woux5gfMBF0Xoe0TbfOLplJN9Bfb0sFr7w6HM7zvhwehK4p3FIAdZcocA4EQBMtRE7kCZpQoTKigclTNAEqFcmB6nN0kdIWAJiWcoIWM49nbeeit11zdLgLeNV8bIIPR_zq1ofWxua7PwWP6xDxsvHORvxmd_u28Wv87LpNqNIlOqttm9zV75yi9_vFav5Ili8PT_PZkpSMio5URVVaqTJW5gKELqQSmaO25E6pfueauSIvMgGMg5V5zRQteKYLqCslSiHZFN2MvfsYPg8udWYbDv3rbTJKKDo44D1ER6iMIaXoarOPzc7GL0PBDLLMKMv0sswgywzF2ZhJPevXLv4V_x_6AXyha4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757110444</pqid></control><display><type>article</type><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, K. ; Leem, K. H. ; Pelekanos, G.</creator><creatorcontrib>Kim, K. ; Leem, K. H. ; Pelekanos, G.</creatorcontrib><description>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-009-9558-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Helmholtz equations ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Noise ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Regularization methods ; Sampling techniques ; Scattering ; Studies</subject><ispartof>Acta applicandae mathematicae, 2010-11, Vol.112 (2), p.171-180</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</citedby><cites>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-009-9558-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-009-9558-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Pelekanos, G.</creatorcontrib><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Helmholtz equations</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regularization methods</subject><subject>Sampling techniques</subject><subject>Scattering</subject><subject>Studies</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLvgffSk-Woux5gfMBF0Xoe0TbfOLplJN9Bfb0sFr7w6HM7zvhwehK4p3FIAdZcocA4EQBMtRE7kCZpQoTKigclTNAEqFcmB6nN0kdIWAJiWcoIWM49nbeeit11zdLgLeNV8bIIPR_zq1ofWxua7PwWP6xDxsvHORvxmd_u28Wv87LpNqNIlOqttm9zV75yi9_vFav5Ili8PT_PZkpSMio5URVVaqTJW5gKELqQSmaO25E6pfueauSIvMgGMg5V5zRQteKYLqCslSiHZFN2MvfsYPg8udWYbDv3rbTJKKDo44D1ER6iMIaXoarOPzc7GL0PBDLLMKMv0sswgywzF2ZhJPevXLv4V_x_6AXyha4Q</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Kim, K.</creator><creator>Leem, K. H.</creator><creator>Pelekanos, G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><author>Kim, K. ; Leem, K. H. ; Pelekanos, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Helmholtz equations</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regularization methods</topic><topic>Sampling techniques</topic><topic>Scattering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Pelekanos, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, K.</au><au>Leem, K. H.</au><au>Pelekanos, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alternative to Tikhonov Regularization for Linear Sampling Methods</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>112</volume><issue>2</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-009-9558-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2010-11, Vol.112 (2), p.171-180 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_757110444 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Helmholtz equations Inverse problems Mathematics Mathematics and Statistics Noise Partial Differential Equations Probability Theory and Stochastic Processes Regularization methods Sampling techniques Scattering Studies |
title | An Alternative to Tikhonov Regularization for Linear Sampling Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alternative%20to%20Tikhonov%20Regularization%20for%20Linear%20Sampling%20Methods&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Kim,%20K.&rft.date=2010-11-01&rft.volume=112&rft.issue=2&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-009-9558-6&rft_dat=%3Cproquest_cross%3E2158424691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757110444&rft_id=info:pmid/&rfr_iscdi=true |