An Alternative to Tikhonov Regularization for Linear Sampling Methods

The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2010-11, Vol.112 (2), p.171-180
Hauptverfasser: Kim, K., Leem, K. H., Pelekanos, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 171
container_title Acta applicandae mathematicae
container_volume 112
creator Kim, K.
Leem, K. H.
Pelekanos, G.
description The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.
doi_str_mv 10.1007/s10440-009-9558-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_757110444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158424691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLvgffSk-Woux5gfMBF0Xoe0TbfOLplJN9Bfb0sFr7w6HM7zvhwehK4p3FIAdZcocA4EQBMtRE7kCZpQoTKigclTNAEqFcmB6nN0kdIWAJiWcoIWM49nbeeit11zdLgLeNV8bIIPR_zq1ofWxua7PwWP6xDxsvHORvxmd_u28Wv87LpNqNIlOqttm9zV75yi9_vFav5Ili8PT_PZkpSMio5URVVaqTJW5gKELqQSmaO25E6pfueauSIvMgGMg5V5zRQteKYLqCslSiHZFN2MvfsYPg8udWYbDv3rbTJKKDo44D1ER6iMIaXoarOPzc7GL0PBDLLMKMv0sswgywzF2ZhJPevXLv4V_x_6AXyha4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757110444</pqid></control><display><type>article</type><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, K. ; Leem, K. H. ; Pelekanos, G.</creator><creatorcontrib>Kim, K. ; Leem, K. H. ; Pelekanos, G.</creatorcontrib><description>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-009-9558-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Helmholtz equations ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Noise ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Regularization methods ; Sampling techniques ; Scattering ; Studies</subject><ispartof>Acta applicandae mathematicae, 2010-11, Vol.112 (2), p.171-180</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</citedby><cites>FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-009-9558-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-009-9558-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Pelekanos, G.</creatorcontrib><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Helmholtz equations</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regularization methods</subject><subject>Sampling techniques</subject><subject>Scattering</subject><subject>Studies</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLvgffSk-Woux5gfMBF0Xoe0TbfOLplJN9Bfb0sFr7w6HM7zvhwehK4p3FIAdZcocA4EQBMtRE7kCZpQoTKigclTNAEqFcmB6nN0kdIWAJiWcoIWM49nbeeit11zdLgLeNV8bIIPR_zq1ofWxua7PwWP6xDxsvHORvxmd_u28Wv87LpNqNIlOqttm9zV75yi9_vFav5Ili8PT_PZkpSMio5URVVaqTJW5gKELqQSmaO25E6pfueauSIvMgGMg5V5zRQteKYLqCslSiHZFN2MvfsYPg8udWYbDv3rbTJKKDo44D1ER6iMIaXoarOPzc7GL0PBDLLMKMv0sswgywzF2ZhJPevXLv4V_x_6AXyha4Q</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Kim, K.</creator><creator>Leem, K. H.</creator><creator>Pelekanos, G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>An Alternative to Tikhonov Regularization for Linear Sampling Methods</title><author>Kim, K. ; Leem, K. H. ; Pelekanos, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-dbdca6723c85059b6752e1ac4e77059493eb8b250340a68f371b429b0fd75c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Helmholtz equations</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regularization methods</topic><topic>Sampling techniques</topic><topic>Scattering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Pelekanos, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, K.</au><au>Leem, K. H.</au><au>Pelekanos, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alternative to Tikhonov Regularization for Linear Sampling Methods</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>112</volume><issue>2</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>The problem of determining the shape of an obstacle from far-field measurements is considered. It is well known that linear sampling methods have been widely used for shape reconstructions obtained via the singular system of an ill conditioned discretized far-field operator. For our reconstructions we assume that the far-field data are noisy and we employ a novel regularization method that does not require determination of a regularization parameter.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-009-9558-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2010-11, Vol.112 (2), p.171-180
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_757110444
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Helmholtz equations
Inverse problems
Mathematics
Mathematics and Statistics
Noise
Partial Differential Equations
Probability Theory and Stochastic Processes
Regularization methods
Sampling techniques
Scattering
Studies
title An Alternative to Tikhonov Regularization for Linear Sampling Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alternative%20to%20Tikhonov%20Regularization%20for%20Linear%20Sampling%20Methods&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Kim,%20K.&rft.date=2010-11-01&rft.volume=112&rft.issue=2&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-009-9558-6&rft_dat=%3Cproquest_cross%3E2158424691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757110444&rft_id=info:pmid/&rfr_iscdi=true