Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly r...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (38), p.16548-16553 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16553 |
---|---|
container_issue | 38 |
container_start_page | 16548 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Muñoz-Espín, Daniel Holguera, Isabel Ballesteros-Plaza, David Carballido-López, Rut Salas, Margarita |
description | The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. |
doi_str_mv | 10.1073/pnas.1010530107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_755041415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779704</jstor_id><sourcerecordid>20779704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</originalsourceid><addsrcrecordid>eNqFkstv1DAQhy0EokvhzAlkcUEcQsePxM6l0qo8irSCS8XVchxn16tsHGynUvnrccjSll56sUeeb37jeSD0msBHAoKdjYOO2SJQsnyIJ2hFoCZFxWt4ilYAVBSSU36CXsS4B4C6lPAcnVCQlFFar1D70wXd42TDwQ3ZGINP1g24dcGaFLHVob_BPmz14H7r5PyAfYfHnd5a_On7Ggc79s4sDp1w2lncaJPlXBYbJtNb79qX6Fmn-2hfHe9TdPXl89XFZbH58fXbxXpTmIpBKqwB0krWVZTLpmmo1ZqVwCxlTLRSVg0zpM3qRuq2AqN119V1LeaiSEU4O0Xni-w4NQfbGjukXJsagzvocKO8dup_z-B2auuvFa05FyXLAh8Wgd2DsMv1Rs1vQCjw3Olrktn3x2TB_5psTOrgorF9rwfrp6gkKcuM5v8_RoqKUkGIqB4ny5LUUog5-7sH5N5PIQ_wLwSccFJm6GyBTPAxBtvd1kRAzeuj5vVRd-uTI97e7-At_29fMoCPwBx5JycUk4pUJZcZebMg-5h8uCchRJ4VZ38A1nXUzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755041415</pqid></control><display><type>article</type><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</creator><creatorcontrib>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</creatorcontrib><description>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010530107</identifier><identifier>PMID: 20823229</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenoviruses ; Bacillus Phages - genetics ; Bacillus Phages - physiology ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacillus subtilis - virology ; Bacterial proteins ; Bacteriophage PRD1 - genetics ; Bacteriophage PRD1 - physiology ; Bacteriophages ; Binding sites ; Biological Sciences ; Cytoskeleton ; Data processing ; DNA ; DNA biosynthesis ; DNA polymerase ; DNA replication ; DNA Replication - genetics ; DNA Replication - physiology ; DNA, Viral - biosynthesis ; DNA, Viral - genetics ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - virology ; Genes, Bacterial ; Genes, Viral ; Genomes ; Infections ; Life Sciences ; Models, Biological ; Models, Molecular ; Molecular structure ; Mutation ; Nucleoids ; Phages ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Replication ; Terminal protein ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Virus Replication - genetics ; Virus Replication - physiology ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (38), p.16548-16553</ispartof><rights>Copyright National Academy of Sciences Sep 21, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</citedby><cites>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</cites><orcidid>0000-0003-2796-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20823229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01204301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz-Espín, Daniel</creatorcontrib><creatorcontrib>Holguera, Isabel</creatorcontrib><creatorcontrib>Ballesteros-Plaza, David</creatorcontrib><creatorcontrib>Carballido-López, Rut</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</description><subject>Adenoviruses</subject><subject>Bacillus Phages - genetics</subject><subject>Bacillus Phages - physiology</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacillus subtilis - virology</subject><subject>Bacterial proteins</subject><subject>Bacteriophage PRD1 - genetics</subject><subject>Bacteriophage PRD1 - physiology</subject><subject>Bacteriophages</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cytoskeleton</subject><subject>Data processing</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA polymerase</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA Replication - physiology</subject><subject>DNA, Viral - biosynthesis</subject><subject>DNA, Viral - genetics</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - virology</subject><subject>Genes, Bacterial</subject><subject>Genes, Viral</subject><subject>Genomes</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Nucleoids</subject><subject>Phages</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Replication</subject><subject>Terminal protein</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Replication - genetics</subject><subject>Virus Replication - physiology</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstv1DAQhy0EokvhzAlkcUEcQsePxM6l0qo8irSCS8XVchxn16tsHGynUvnrccjSll56sUeeb37jeSD0msBHAoKdjYOO2SJQsnyIJ2hFoCZFxWt4ilYAVBSSU36CXsS4B4C6lPAcnVCQlFFar1D70wXd42TDwQ3ZGINP1g24dcGaFLHVob_BPmz14H7r5PyAfYfHnd5a_On7Ggc79s4sDp1w2lncaJPlXBYbJtNb79qX6Fmn-2hfHe9TdPXl89XFZbH58fXbxXpTmIpBKqwB0krWVZTLpmmo1ZqVwCxlTLRSVg0zpM3qRuq2AqN119V1LeaiSEU4O0Xni-w4NQfbGjukXJsagzvocKO8dup_z-B2auuvFa05FyXLAh8Wgd2DsMv1Rs1vQCjw3Olrktn3x2TB_5psTOrgorF9rwfrp6gkKcuM5v8_RoqKUkGIqB4ny5LUUog5-7sH5N5PIQ_wLwSccFJm6GyBTPAxBtvd1kRAzeuj5vVRd-uTI97e7-At_29fMoCPwBx5JycUk4pUJZcZebMg-5h8uCchRJ4VZ38A1nXUzg</recordid><startdate>20100921</startdate><enddate>20100921</enddate><creator>Muñoz-Espín, Daniel</creator><creator>Holguera, Isabel</creator><creator>Ballesteros-Plaza, David</creator><creator>Carballido-López, Rut</creator><creator>Salas, Margarita</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2796-6596</orcidid></search><sort><creationdate>20100921</creationdate><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><author>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenoviruses</topic><topic>Bacillus Phages - genetics</topic><topic>Bacillus Phages - physiology</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacillus subtilis - virology</topic><topic>Bacterial proteins</topic><topic>Bacteriophage PRD1 - genetics</topic><topic>Bacteriophage PRD1 - physiology</topic><topic>Bacteriophages</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cytoskeleton</topic><topic>Data processing</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA polymerase</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA Replication - physiology</topic><topic>DNA, Viral - biosynthesis</topic><topic>DNA, Viral - genetics</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - virology</topic><topic>Genes, Bacterial</topic><topic>Genes, Viral</topic><topic>Genomes</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Nucleoids</topic><topic>Phages</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Replication</topic><topic>Terminal protein</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Replication - genetics</topic><topic>Virus Replication - physiology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Espín, Daniel</creatorcontrib><creatorcontrib>Holguera, Isabel</creatorcontrib><creatorcontrib>Ballesteros-Plaza, David</creatorcontrib><creatorcontrib>Carballido-López, Rut</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Espín, Daniel</au><au>Holguera, Isabel</au><au>Ballesteros-Plaza, David</au><au>Carballido-López, Rut</au><au>Salas, Margarita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-21</date><risdate>2010</risdate><volume>107</volume><issue>38</issue><spage>16548</spage><epage>16553</epage><pages>16548-16553</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20823229</pmid><doi>10.1073/pnas.1010530107</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2796-6596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (38), p.16548-16553 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_755041415 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenoviruses Bacillus Phages - genetics Bacillus Phages - physiology Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacillus subtilis - virology Bacterial proteins Bacteriophage PRD1 - genetics Bacteriophage PRD1 - physiology Bacteriophages Binding sites Biological Sciences Cytoskeleton Data processing DNA DNA biosynthesis DNA polymerase DNA replication DNA Replication - genetics DNA Replication - physiology DNA, Viral - biosynthesis DNA, Viral - genetics DNA-directed DNA polymerase DNA-Directed DNA Polymerase - metabolism E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - virology Genes, Bacterial Genes, Viral Genomes Infections Life Sciences Models, Biological Models, Molecular Molecular structure Mutation Nucleoids Phages Protein Structure, Tertiary Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Replication Terminal protein Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Virus Replication - genetics Virus Replication - physiology Viruses |
title | Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral%20terminal%20protein%20directs%20early%20organization%20of%20phage%20DNA%20replication%20at%20the%20bacterial%20nucleoid&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mu%C3%B1oz-Esp%C3%ADn,%20Daniel&rft.date=2010-09-21&rft.volume=107&rft.issue=38&rft.spage=16548&rft.epage=16553&rft.pages=16548-16553&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010530107&rft_dat=%3Cjstor_proqu%3E20779704%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755041415&rft_id=info:pmid/20823229&rft_jstor_id=20779704&rfr_iscdi=true |