Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid

The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (38), p.16548-16553
Hauptverfasser: Muñoz-Espín, Daniel, Holguera, Isabel, Ballesteros-Plaza, David, Carballido-López, Rut, Salas, Margarita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16553
container_issue 38
container_start_page 16548
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Muñoz-Espín, Daniel
Holguera, Isabel
Ballesteros-Plaza, David
Carballido-López, Rut
Salas, Margarita
description The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
doi_str_mv 10.1073/pnas.1010530107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_755041415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779704</jstor_id><sourcerecordid>20779704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</originalsourceid><addsrcrecordid>eNqFkstv1DAQhy0EokvhzAlkcUEcQsePxM6l0qo8irSCS8XVchxn16tsHGynUvnrccjSll56sUeeb37jeSD0msBHAoKdjYOO2SJQsnyIJ2hFoCZFxWt4ilYAVBSSU36CXsS4B4C6lPAcnVCQlFFar1D70wXd42TDwQ3ZGINP1g24dcGaFLHVob_BPmz14H7r5PyAfYfHnd5a_On7Ggc79s4sDp1w2lncaJPlXBYbJtNb79qX6Fmn-2hfHe9TdPXl89XFZbH58fXbxXpTmIpBKqwB0krWVZTLpmmo1ZqVwCxlTLRSVg0zpM3qRuq2AqN119V1LeaiSEU4O0Xni-w4NQfbGjukXJsagzvocKO8dup_z-B2auuvFa05FyXLAh8Wgd2DsMv1Rs1vQCjw3Olrktn3x2TB_5psTOrgorF9rwfrp6gkKcuM5v8_RoqKUkGIqB4ny5LUUog5-7sH5N5PIQ_wLwSccFJm6GyBTPAxBtvd1kRAzeuj5vVRd-uTI97e7-At_29fMoCPwBx5JycUk4pUJZcZebMg-5h8uCchRJ4VZ38A1nXUzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755041415</pqid></control><display><type>article</type><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</creator><creatorcontrib>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</creatorcontrib><description>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010530107</identifier><identifier>PMID: 20823229</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenoviruses ; Bacillus Phages - genetics ; Bacillus Phages - physiology ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacillus subtilis - virology ; Bacterial proteins ; Bacteriophage PRD1 - genetics ; Bacteriophage PRD1 - physiology ; Bacteriophages ; Binding sites ; Biological Sciences ; Cytoskeleton ; Data processing ; DNA ; DNA biosynthesis ; DNA polymerase ; DNA replication ; DNA Replication - genetics ; DNA Replication - physiology ; DNA, Viral - biosynthesis ; DNA, Viral - genetics ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - virology ; Genes, Bacterial ; Genes, Viral ; Genomes ; Infections ; Life Sciences ; Models, Biological ; Models, Molecular ; Molecular structure ; Mutation ; Nucleoids ; Phages ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Replication ; Terminal protein ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Virus Replication - genetics ; Virus Replication - physiology ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (38), p.16548-16553</ispartof><rights>Copyright National Academy of Sciences Sep 21, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</citedby><cites>FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</cites><orcidid>0000-0003-2796-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20823229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01204301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz-Espín, Daniel</creatorcontrib><creatorcontrib>Holguera, Isabel</creatorcontrib><creatorcontrib>Ballesteros-Plaza, David</creatorcontrib><creatorcontrib>Carballido-López, Rut</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</description><subject>Adenoviruses</subject><subject>Bacillus Phages - genetics</subject><subject>Bacillus Phages - physiology</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacillus subtilis - virology</subject><subject>Bacterial proteins</subject><subject>Bacteriophage PRD1 - genetics</subject><subject>Bacteriophage PRD1 - physiology</subject><subject>Bacteriophages</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cytoskeleton</subject><subject>Data processing</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA polymerase</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA Replication - physiology</subject><subject>DNA, Viral - biosynthesis</subject><subject>DNA, Viral - genetics</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - virology</subject><subject>Genes, Bacterial</subject><subject>Genes, Viral</subject><subject>Genomes</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Nucleoids</subject><subject>Phages</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Replication</subject><subject>Terminal protein</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Replication - genetics</subject><subject>Virus Replication - physiology</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstv1DAQhy0EokvhzAlkcUEcQsePxM6l0qo8irSCS8XVchxn16tsHGynUvnrccjSll56sUeeb37jeSD0msBHAoKdjYOO2SJQsnyIJ2hFoCZFxWt4ilYAVBSSU36CXsS4B4C6lPAcnVCQlFFar1D70wXd42TDwQ3ZGINP1g24dcGaFLHVob_BPmz14H7r5PyAfYfHnd5a_On7Ggc79s4sDp1w2lncaJPlXBYbJtNb79qX6Fmn-2hfHe9TdPXl89XFZbH58fXbxXpTmIpBKqwB0krWVZTLpmmo1ZqVwCxlTLRSVg0zpM3qRuq2AqN119V1LeaiSEU4O0Xni-w4NQfbGjukXJsagzvocKO8dup_z-B2auuvFa05FyXLAh8Wgd2DsMv1Rs1vQCjw3Olrktn3x2TB_5psTOrgorF9rwfrp6gkKcuM5v8_RoqKUkGIqB4ny5LUUog5-7sH5N5PIQ_wLwSccFJm6GyBTPAxBtvd1kRAzeuj5vVRd-uTI97e7-At_29fMoCPwBx5JycUk4pUJZcZebMg-5h8uCchRJ4VZ38A1nXUzg</recordid><startdate>20100921</startdate><enddate>20100921</enddate><creator>Muñoz-Espín, Daniel</creator><creator>Holguera, Isabel</creator><creator>Ballesteros-Plaza, David</creator><creator>Carballido-López, Rut</creator><creator>Salas, Margarita</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2796-6596</orcidid></search><sort><creationdate>20100921</creationdate><title>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</title><author>Muñoz-Espín, Daniel ; Holguera, Isabel ; Ballesteros-Plaza, David ; Carballido-López, Rut ; Salas, Margarita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-ec01d83f6248bbb2eaa3503e2337d886b3c1dbacc8ad60caaff9997095816143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenoviruses</topic><topic>Bacillus Phages - genetics</topic><topic>Bacillus Phages - physiology</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacillus subtilis - virology</topic><topic>Bacterial proteins</topic><topic>Bacteriophage PRD1 - genetics</topic><topic>Bacteriophage PRD1 - physiology</topic><topic>Bacteriophages</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cytoskeleton</topic><topic>Data processing</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA polymerase</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA Replication - physiology</topic><topic>DNA, Viral - biosynthesis</topic><topic>DNA, Viral - genetics</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - virology</topic><topic>Genes, Bacterial</topic><topic>Genes, Viral</topic><topic>Genomes</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Nucleoids</topic><topic>Phages</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Replication</topic><topic>Terminal protein</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Replication - genetics</topic><topic>Virus Replication - physiology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Espín, Daniel</creatorcontrib><creatorcontrib>Holguera, Isabel</creatorcontrib><creatorcontrib>Ballesteros-Plaza, David</creatorcontrib><creatorcontrib>Carballido-López, Rut</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Espín, Daniel</au><au>Holguera, Isabel</au><au>Ballesteros-Plaza, David</au><au>Carballido-López, Rut</au><au>Salas, Margarita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-21</date><risdate>2010</risdate><volume>107</volume><issue>38</issue><spage>16548</spage><epage>16553</epage><pages>16548-16553</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20823229</pmid><doi>10.1073/pnas.1010530107</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2796-6596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (38), p.16548-16553
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_755041415
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenoviruses
Bacillus Phages - genetics
Bacillus Phages - physiology
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacillus subtilis - virology
Bacterial proteins
Bacteriophage PRD1 - genetics
Bacteriophage PRD1 - physiology
Bacteriophages
Binding sites
Biological Sciences
Cytoskeleton
Data processing
DNA
DNA biosynthesis
DNA polymerase
DNA replication
DNA Replication - genetics
DNA Replication - physiology
DNA, Viral - biosynthesis
DNA, Viral - genetics
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - metabolism
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - virology
Genes, Bacterial
Genes, Viral
Genomes
Infections
Life Sciences
Models, Biological
Models, Molecular
Molecular structure
Mutation
Nucleoids
Phages
Protein Structure, Tertiary
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Replication
Terminal protein
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Virus Replication - genetics
Virus Replication - physiology
Viruses
title Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral%20terminal%20protein%20directs%20early%20organization%20of%20phage%20DNA%20replication%20at%20the%20bacterial%20nucleoid&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mu%C3%B1oz-Esp%C3%ADn,%20Daniel&rft.date=2010-09-21&rft.volume=107&rft.issue=38&rft.spage=16548&rft.epage=16553&rft.pages=16548-16553&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010530107&rft_dat=%3Cjstor_proqu%3E20779704%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755041415&rft_id=info:pmid/20823229&rft_jstor_id=20779704&rfr_iscdi=true