Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The S...
Gespeichert in:
Veröffentlicht in: | Chinese journal of oceanology and limnology 2010-09, Vol.28 (5), p.981-989 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 5 |
container_start_page | 981 |
container_title | Chinese journal of oceanology and limnology |
container_volume | 28 |
creator | 陈海英 尹宝树 方国洪 王永刚 |
description | We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA. |
doi_str_mv | 10.1007/s00343-010-9074-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_751418247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>35850536</cqvip_id><sourcerecordid>817603792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVooG6SH9Cb6KWXbDqSVivpGJamLQQasHMWsix5lawlR9ol5N9XiU0DPfQ0M8z3hjcPoc8ErgiA-FYAWMsaINAoEG3TnaAFUYo1HIB_QAugvG1a4Ooj-lTKQ6VVC2qBfJ92e5NDSREnj2OKY4jOZGziBh_bu_4a13WZszfW4ecQN5d_p8GF7TBdvvHL5QqHiKfB4WWapwH3Q4gGL505R6fejMVdHOsZur_5vup_Nre_f_zqr28by2g3NW5NaXUqLZdSCeupFYxQYYWXXccUpZI6QutbTFphlDOGQ0uNVFRsqCeMnaGvh7v7nJ5mVya9C8W6cTTRpbloSUQHTChayS__kA9pzrGa04KTlkjaigqRA2RzKiU7r_c57Ex-0QT0a-76kLuuuevX3HVXNfSgKZWNW5ffD_9PdHRjhxS3T1Wn18Y--jA6zbjkwFnH_gCcDo2f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751418247</pqid></control><display><type>article</type><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>陈海英 尹宝树 方国洪 王永刚</creator><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><description>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</description><identifier>ISSN: 0254-4059</identifier><identifier>ISSN: 2096-5508</identifier><identifier>EISSN: 1993-5005</identifier><identifier>EISSN: 2523-3521</identifier><identifier>DOI: 10.1007/s00343-010-9074-6</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Anomalies ; Comparative studies ; Continental shelves ; Earth and Environmental Science ; Earth Sciences ; Marine ; Neural networks ; Nonlinear equations ; Nonlinear systems ; Nonlinearity ; Oceanography ; Principal components analysis ; Sea ; Sea surface ; Sea surface temperature ; Seasonal variation ; Surface temperature ; Surface water ; Surface wind ; Temperature anomalies ; Wind ; 主成分分析 ; 南海北部大陆架 ; 海温异常 ; 海面风 ; 海面高度 ; 非线性</subject><ispartof>Chinese journal of oceanology and limnology, 2010-09, Vol.28 (5), p.981-989</ispartof><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010</rights><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84119X/84119X.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/751418247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/751418247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72341,73976,74155,74174,74345,74462</link.rule.ids></links><search><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><title>Chinese journal of oceanology and limnology</title><addtitle>Chin. J. Ocean. Limnol</addtitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><description>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</description><subject>Anomalies</subject><subject>Comparative studies</subject><subject>Continental shelves</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Marine</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Oceanography</subject><subject>Principal components analysis</subject><subject>Sea</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasonal variation</subject><subject>Surface temperature</subject><subject>Surface water</subject><subject>Surface wind</subject><subject>Temperature anomalies</subject><subject>Wind</subject><subject>主成分分析</subject><subject>南海北部大陆架</subject><subject>海温异常</subject><subject>海面风</subject><subject>海面高度</subject><subject>非线性</subject><issn>0254-4059</issn><issn>2096-5508</issn><issn>1993-5005</issn><issn>2523-3521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFrGzEQhUVooG6SH9Cb6KWXbDqSVivpGJamLQQasHMWsix5lawlR9ol5N9XiU0DPfQ0M8z3hjcPoc8ErgiA-FYAWMsaINAoEG3TnaAFUYo1HIB_QAugvG1a4Ooj-lTKQ6VVC2qBfJ92e5NDSREnj2OKY4jOZGziBh_bu_4a13WZszfW4ecQN5d_p8GF7TBdvvHL5QqHiKfB4WWapwH3Q4gGL505R6fejMVdHOsZur_5vup_Nre_f_zqr28by2g3NW5NaXUqLZdSCeupFYxQYYWXXccUpZI6QutbTFphlDOGQ0uNVFRsqCeMnaGvh7v7nJ5mVya9C8W6cTTRpbloSUQHTChayS__kA9pzrGa04KTlkjaigqRA2RzKiU7r_c57Ex-0QT0a-76kLuuuevX3HVXNfSgKZWNW5ffD_9PdHRjhxS3T1Wn18Y--jA6zbjkwFnH_gCcDo2f</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>陈海英 尹宝树 方国洪 王永刚</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TG</scope><scope>H95</scope><scope>KL.</scope></search><sort><creationdate>20100901</creationdate><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><author>陈海英 尹宝树 方国洪 王永刚</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anomalies</topic><topic>Comparative studies</topic><topic>Continental shelves</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Marine</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Oceanography</topic><topic>Principal components analysis</topic><topic>Sea</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasonal variation</topic><topic>Surface temperature</topic><topic>Surface water</topic><topic>Surface wind</topic><topic>Temperature anomalies</topic><topic>Wind</topic><topic>主成分分析</topic><topic>南海北部大陆架</topic><topic>海温异常</topic><topic>海面风</topic><topic>海面高度</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Chinese journal of oceanology and limnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>陈海英 尹宝树 方国洪 王永刚</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</atitle><jtitle>Chinese journal of oceanology and limnology</jtitle><stitle>Chin. J. Ocean. Limnol</stitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>28</volume><issue>5</issue><spage>981</spage><epage>989</epage><pages>981-989</pages><issn>0254-4059</issn><issn>2096-5508</issn><eissn>1993-5005</eissn><eissn>2523-3521</eissn><abstract>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s00343-010-9074-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-4059 |
ispartof | Chinese journal of oceanology and limnology, 2010-09, Vol.28 (5), p.981-989 |
issn | 0254-4059 2096-5508 1993-5005 2523-3521 |
language | eng |
recordid | cdi_proquest_journals_751418247 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Anomalies Comparative studies Continental shelves Earth and Environmental Science Earth Sciences Marine Neural networks Nonlinear equations Nonlinear systems Nonlinearity Oceanography Principal components analysis Sea Sea surface Sea surface temperature Seasonal variation Surface temperature Surface water Surface wind Temperature anomalies Wind 主成分分析 南海北部大陆架 海温异常 海面风 海面高度 非线性 |
title | Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20nonlinear%20and%20linear%20PCA%20on%20surface%20wind,%20surface%20height,%20and%20SST%20in%20the%20South%20China%20Sea&rft.jtitle=Chinese%20journal%20of%20oceanology%20and%20limnology&rft.au=%E9%99%88%E6%B5%B7%E8%8B%B1%20%E5%B0%B9%E5%AE%9D%E6%A0%91%20%E6%96%B9%E5%9B%BD%E6%B4%AA%20%E7%8E%8B%E6%B0%B8%E5%88%9A&rft.date=2010-09-01&rft.volume=28&rft.issue=5&rft.spage=981&rft.epage=989&rft.pages=981-989&rft.issn=0254-4059&rft.eissn=1993-5005&rft_id=info:doi/10.1007/s00343-010-9074-6&rft_dat=%3Cproquest_cross%3E817603792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751418247&rft_id=info:pmid/&rft_cqvip_id=35850536&rfr_iscdi=true |