Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea

We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of oceanology and limnology 2010-09, Vol.28 (5), p.981-989
1. Verfasser: 陈海英 尹宝树 方国洪 王永刚
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 5
container_start_page 981
container_title Chinese journal of oceanology and limnology
container_volume 28
creator 陈海英 尹宝树 方国洪 王永刚
description We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
doi_str_mv 10.1007/s00343-010-9074-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_751418247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>35850536</cqvip_id><sourcerecordid>817603792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVooG6SH9Cb6KWXbDqSVivpGJamLQQasHMWsix5lawlR9ol5N9XiU0DPfQ0M8z3hjcPoc8ErgiA-FYAWMsaINAoEG3TnaAFUYo1HIB_QAugvG1a4Ooj-lTKQ6VVC2qBfJ92e5NDSREnj2OKY4jOZGziBh_bu_4a13WZszfW4ecQN5d_p8GF7TBdvvHL5QqHiKfB4WWapwH3Q4gGL505R6fejMVdHOsZur_5vup_Nre_f_zqr28by2g3NW5NaXUqLZdSCeupFYxQYYWXXccUpZI6QutbTFphlDOGQ0uNVFRsqCeMnaGvh7v7nJ5mVya9C8W6cTTRpbloSUQHTChayS__kA9pzrGa04KTlkjaigqRA2RzKiU7r_c57Ex-0QT0a-76kLuuuevX3HVXNfSgKZWNW5ffD_9PdHRjhxS3T1Wn18Y--jA6zbjkwFnH_gCcDo2f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751418247</pqid></control><display><type>article</type><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>陈海英 尹宝树 方国洪 王永刚</creator><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><description>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</description><identifier>ISSN: 0254-4059</identifier><identifier>ISSN: 2096-5508</identifier><identifier>EISSN: 1993-5005</identifier><identifier>EISSN: 2523-3521</identifier><identifier>DOI: 10.1007/s00343-010-9074-6</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Anomalies ; Comparative studies ; Continental shelves ; Earth and Environmental Science ; Earth Sciences ; Marine ; Neural networks ; Nonlinear equations ; Nonlinear systems ; Nonlinearity ; Oceanography ; Principal components analysis ; Sea ; Sea surface ; Sea surface temperature ; Seasonal variation ; Surface temperature ; Surface water ; Surface wind ; Temperature anomalies ; Wind ; 主成分分析 ; 南海北部大陆架 ; 海温异常 ; 海面风 ; 海面高度 ; 非线性</subject><ispartof>Chinese journal of oceanology and limnology, 2010-09, Vol.28 (5), p.981-989</ispartof><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010</rights><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84119X/84119X.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/751418247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/751418247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72341,73976,74155,74174,74345,74462</link.rule.ids></links><search><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><title>Chinese journal of oceanology and limnology</title><addtitle>Chin. J. Ocean. Limnol</addtitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><description>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</description><subject>Anomalies</subject><subject>Comparative studies</subject><subject>Continental shelves</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Marine</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Oceanography</subject><subject>Principal components analysis</subject><subject>Sea</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasonal variation</subject><subject>Surface temperature</subject><subject>Surface water</subject><subject>Surface wind</subject><subject>Temperature anomalies</subject><subject>Wind</subject><subject>主成分分析</subject><subject>南海北部大陆架</subject><subject>海温异常</subject><subject>海面风</subject><subject>海面高度</subject><subject>非线性</subject><issn>0254-4059</issn><issn>2096-5508</issn><issn>1993-5005</issn><issn>2523-3521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFrGzEQhUVooG6SH9Cb6KWXbDqSVivpGJamLQQasHMWsix5lawlR9ol5N9XiU0DPfQ0M8z3hjcPoc8ErgiA-FYAWMsaINAoEG3TnaAFUYo1HIB_QAugvG1a4Ooj-lTKQ6VVC2qBfJ92e5NDSREnj2OKY4jOZGziBh_bu_4a13WZszfW4ecQN5d_p8GF7TBdvvHL5QqHiKfB4WWapwH3Q4gGL505R6fejMVdHOsZur_5vup_Nre_f_zqr28by2g3NW5NaXUqLZdSCeupFYxQYYWXXccUpZI6QutbTFphlDOGQ0uNVFRsqCeMnaGvh7v7nJ5mVya9C8W6cTTRpbloSUQHTChayS__kA9pzrGa04KTlkjaigqRA2RzKiU7r_c57Ex-0QT0a-76kLuuuevX3HVXNfSgKZWNW5ffD_9PdHRjhxS3T1Wn18Y--jA6zbjkwFnH_gCcDo2f</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>陈海英 尹宝树 方国洪 王永刚</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TG</scope><scope>H95</scope><scope>KL.</scope></search><sort><creationdate>20100901</creationdate><title>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</title><author>陈海英 尹宝树 方国洪 王永刚</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-eb220258c58897cf2c73127c7f866392282e1299338c7a9eaa5042a8927d2f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anomalies</topic><topic>Comparative studies</topic><topic>Continental shelves</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Marine</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Oceanography</topic><topic>Principal components analysis</topic><topic>Sea</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasonal variation</topic><topic>Surface temperature</topic><topic>Surface water</topic><topic>Surface wind</topic><topic>Temperature anomalies</topic><topic>Wind</topic><topic>主成分分析</topic><topic>南海北部大陆架</topic><topic>海温异常</topic><topic>海面风</topic><topic>海面高度</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>陈海英 尹宝树 方国洪 王永刚</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Chinese journal of oceanology and limnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>陈海英 尹宝树 方国洪 王永刚</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea</atitle><jtitle>Chinese journal of oceanology and limnology</jtitle><stitle>Chin. J. Ocean. Limnol</stitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>28</volume><issue>5</issue><spage>981</spage><epage>989</epage><pages>981-989</pages><issn>0254-4059</issn><issn>2096-5508</issn><eissn>1993-5005</eissn><eissn>2523-3521</eissn><abstract>We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s00343-010-9074-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-4059
ispartof Chinese journal of oceanology and limnology, 2010-09, Vol.28 (5), p.981-989
issn 0254-4059
2096-5508
1993-5005
2523-3521
language eng
recordid cdi_proquest_journals_751418247
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Anomalies
Comparative studies
Continental shelves
Earth and Environmental Science
Earth Sciences
Marine
Neural networks
Nonlinear equations
Nonlinear systems
Nonlinearity
Oceanography
Principal components analysis
Sea
Sea surface
Sea surface temperature
Seasonal variation
Surface temperature
Surface water
Surface wind
Temperature anomalies
Wind
主成分分析
南海北部大陆架
海温异常
海面风
海面高度
非线性
title Comparison of nonlinear and linear PCA on surface wind, surface height, and SST in the South China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20nonlinear%20and%20linear%20PCA%20on%20surface%20wind,%20surface%20height,%20and%20SST%20in%20the%20South%20China%20Sea&rft.jtitle=Chinese%20journal%20of%20oceanology%20and%20limnology&rft.au=%E9%99%88%E6%B5%B7%E8%8B%B1%20%E5%B0%B9%E5%AE%9D%E6%A0%91%20%E6%96%B9%E5%9B%BD%E6%B4%AA%20%E7%8E%8B%E6%B0%B8%E5%88%9A&rft.date=2010-09-01&rft.volume=28&rft.issue=5&rft.spage=981&rft.epage=989&rft.pages=981-989&rft.issn=0254-4059&rft.eissn=1993-5005&rft_id=info:doi/10.1007/s00343-010-9074-6&rft_dat=%3Cproquest_cross%3E817603792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751418247&rft_id=info:pmid/&rft_cqvip_id=35850536&rfr_iscdi=true