Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes

Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2006-01, Vol.279 (1/2), p.107-117
Hauptverfasser: Sato, S., Comerford, N.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1/2
container_start_page 107
container_title Plant and soil
container_volume 279
creator Sato, S.
Comerford, N.B.
description Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption isotherms. Our study had two objectives: (1) to evaluate the suitability of using multiple strips of AEMs (termed the Multiple AEM Method) to develop P desorption isotherms; and (2) to compare the Multiple AEM Method with a sequential-extraction approach using AEMs (termed the Sequential AEM Method) to determine if the manner in which AEMs were used would influence the slope of the desorption isotherm, i.e. the partition coefficient. Both methods yielded well-defined, but numerically different desorption isotherms for all levels of sorbed P. However, estimated Kd values among methods were equivalent in the low and medium levels of P sorbed. The Multiple AEM method was quicker than the Sequential AEM method, but both gave similar Kd values in an agriculturally significant range of soil solution concentrations. These methods should be tested on a range of soil type to determine their suitability in developing P desorption isotherms and to move toward method standardization for desorption isotherms.
doi_str_mv 10.1007/s11104-005-0437-2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_751125764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24125271</jstor_id><sourcerecordid>24125271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-5d69b6782c1753fb23cd6b0bd9816972ed33420a2fc900924f7275e052d318623</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AA9CETxGJ0mTbI_L4hcseFHwFvqRblu2Tc20ov_e1C56CENmnrxDHkIuGdwyAH2HjDGIKYCkEAtN-RFZMKkFlSDUMVkACE5BJ--n5AyxgenO1II0a0SLWHe7qLVD5QqMSuejwn7aveundl85DMePGLrofD_UrotqdENlfRtw79oIXb3HaPzNSbsJsF95lXY7G2LbzKedxXNyUqZ7tBeHuiRvD_evmye6fXl83qy3NBc8HqgsVJIpveI501KUGRd5oTLIimTFVKK5LYSIOaS8zBOAhMel5lpakLwQbKW4WJLrObf37mO0OJjGjb4LK42WjHGpVRwgNkO5d4jelqb3dZv6b8PATEbNbNQEo2Yyaqbgm0Nwinm6L8Ov8hr_H2olgmwZuKuZa3Bw_m_O47CbayZ-ACzNgMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751125764</pqid></control><display><type>article</type><title>Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sato, S. ; Comerford, N.B.</creator><creatorcontrib>Sato, S. ; Comerford, N.B.</creatorcontrib><description>Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption isotherms. Our study had two objectives: (1) to evaluate the suitability of using multiple strips of AEMs (termed the Multiple AEM Method) to develop P desorption isotherms; and (2) to compare the Multiple AEM Method with a sequential-extraction approach using AEMs (termed the Sequential AEM Method) to determine if the manner in which AEMs were used would influence the slope of the desorption isotherm, i.e. the partition coefficient. Both methods yielded well-defined, but numerically different desorption isotherms for all levels of sorbed P. However, estimated Kd values among methods were equivalent in the low and medium levels of P sorbed. The Multiple AEM method was quicker than the Sequential AEM method, but both gave similar Kd values in an agriculturally significant range of soil solution concentrations. These methods should be tested on a range of soil type to determine their suitability in developing P desorption isotherms and to move toward method standardization for desorption isotherms.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-005-0437-2</identifier><identifier>CODEN: PLSOA2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Acid soils ; Adsorption ; Agricultural soils ; Agrology ; Agronomy. Soil science and plant productions ; Anion exchange ; Anions ; Biological and medical sciences ; Chemical, physicochemical, biochemical and biological properties ; Clay soils ; Desorption ; Forest soils ; Fundamental and applied biological sciences. Psychology ; Isotherms ; Methods ; Mineral components. Ionic and exchange properties ; Phosphorus ; Physics, chemistry, biochemistry and biology of agricultural and forest soils ; Soil analysis ; Soil science ; Soil solution ; Soil types ; Sorption</subject><ispartof>Plant and soil, 2006-01, Vol.279 (1/2), p.107-117</ispartof><rights>Springer 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-5d69b6782c1753fb23cd6b0bd9816972ed33420a2fc900924f7275e052d318623</citedby><cites>FETCH-LOGICAL-c324t-5d69b6782c1753fb23cd6b0bd9816972ed33420a2fc900924f7275e052d318623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24125271$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24125271$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17630365$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Comerford, N.B.</creatorcontrib><title>Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes</title><title>Plant and soil</title><description>Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption isotherms. Our study had two objectives: (1) to evaluate the suitability of using multiple strips of AEMs (termed the Multiple AEM Method) to develop P desorption isotherms; and (2) to compare the Multiple AEM Method with a sequential-extraction approach using AEMs (termed the Sequential AEM Method) to determine if the manner in which AEMs were used would influence the slope of the desorption isotherm, i.e. the partition coefficient. Both methods yielded well-defined, but numerically different desorption isotherms for all levels of sorbed P. However, estimated Kd values among methods were equivalent in the low and medium levels of P sorbed. The Multiple AEM method was quicker than the Sequential AEM method, but both gave similar Kd values in an agriculturally significant range of soil solution concentrations. These methods should be tested on a range of soil type to determine their suitability in developing P desorption isotherms and to move toward method standardization for desorption isotherms.</description><subject>Acid soils</subject><subject>Adsorption</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Anion exchange</subject><subject>Anions</subject><subject>Biological and medical sciences</subject><subject>Chemical, physicochemical, biochemical and biological properties</subject><subject>Clay soils</subject><subject>Desorption</subject><subject>Forest soils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isotherms</subject><subject>Methods</subject><subject>Mineral components. Ionic and exchange properties</subject><subject>Phosphorus</subject><subject>Physics, chemistry, biochemistry and biology of agricultural and forest soils</subject><subject>Soil analysis</subject><subject>Soil science</subject><subject>Soil solution</subject><subject>Soil types</subject><subject>Sorption</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LxDAQhoMouK7-AA9CETxGJ0mTbI_L4hcseFHwFvqRblu2Tc20ov_e1C56CENmnrxDHkIuGdwyAH2HjDGIKYCkEAtN-RFZMKkFlSDUMVkACE5BJ--n5AyxgenO1II0a0SLWHe7qLVD5QqMSuejwn7aveundl85DMePGLrofD_UrotqdENlfRtw79oIXb3HaPzNSbsJsF95lXY7G2LbzKedxXNyUqZ7tBeHuiRvD_evmye6fXl83qy3NBc8HqgsVJIpveI501KUGRd5oTLIimTFVKK5LYSIOaS8zBOAhMel5lpakLwQbKW4WJLrObf37mO0OJjGjb4LK42WjHGpVRwgNkO5d4jelqb3dZv6b8PATEbNbNQEo2Yyaqbgm0Nwinm6L8Ov8hr_H2olgmwZuKuZa3Bw_m_O47CbayZ-ACzNgMM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Sato, S.</creator><creator>Comerford, N.B.</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20060101</creationdate><title>Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes</title><author>Sato, S. ; Comerford, N.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-5d69b6782c1753fb23cd6b0bd9816972ed33420a2fc900924f7275e052d318623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acid soils</topic><topic>Adsorption</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Anion exchange</topic><topic>Anions</topic><topic>Biological and medical sciences</topic><topic>Chemical, physicochemical, biochemical and biological properties</topic><topic>Clay soils</topic><topic>Desorption</topic><topic>Forest soils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isotherms</topic><topic>Methods</topic><topic>Mineral components. Ionic and exchange properties</topic><topic>Phosphorus</topic><topic>Physics, chemistry, biochemistry and biology of agricultural and forest soils</topic><topic>Soil analysis</topic><topic>Soil science</topic><topic>Soil solution</topic><topic>Soil types</topic><topic>Sorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Comerford, N.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, S.</au><au>Comerford, N.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes</atitle><jtitle>Plant and soil</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>279</volume><issue>1/2</issue><spage>107</spage><epage>117</epage><pages>107-117</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><coden>PLSOA2</coden><abstract>Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption isotherms. Our study had two objectives: (1) to evaluate the suitability of using multiple strips of AEMs (termed the Multiple AEM Method) to develop P desorption isotherms; and (2) to compare the Multiple AEM Method with a sequential-extraction approach using AEMs (termed the Sequential AEM Method) to determine if the manner in which AEMs were used would influence the slope of the desorption isotherm, i.e. the partition coefficient. Both methods yielded well-defined, but numerically different desorption isotherms for all levels of sorbed P. However, estimated Kd values among methods were equivalent in the low and medium levels of P sorbed. The Multiple AEM method was quicker than the Sequential AEM method, but both gave similar Kd values in an agriculturally significant range of soil solution concentrations. These methods should be tested on a range of soil type to determine their suitability in developing P desorption isotherms and to move toward method standardization for desorption isotherms.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11104-005-0437-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2006-01, Vol.279 (1/2), p.107-117
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_journals_751125764
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Acid soils
Adsorption
Agricultural soils
Agrology
Agronomy. Soil science and plant productions
Anion exchange
Anions
Biological and medical sciences
Chemical, physicochemical, biochemical and biological properties
Clay soils
Desorption
Forest soils
Fundamental and applied biological sciences. Psychology
Isotherms
Methods
Mineral components. Ionic and exchange properties
Phosphorus
Physics, chemistry, biochemistry and biology of agricultural and forest soils
Soil analysis
Soil science
Soil solution
Soil types
Sorption
title Assessing methods for developing phosphorus desorption isotherms from soils using anion exchange membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20methods%20for%20developing%20phosphorus%20desorption%20isotherms%20from%20soils%20using%20anion%20exchange%20membranes&rft.jtitle=Plant%20and%20soil&rft.au=Sato,%20S.&rft.date=2006-01-01&rft.volume=279&rft.issue=1/2&rft.spage=107&rft.epage=117&rft.pages=107-117&rft.issn=0032-079X&rft.eissn=1573-5036&rft.coden=PLSOA2&rft_id=info:doi/10.1007/s11104-005-0437-2&rft_dat=%3Cjstor_proqu%3E24125271%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751125764&rft_id=info:pmid/&rft_jstor_id=24125271&rfr_iscdi=true