Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films
The best films for thermoelectric applications near room temperature are based on the compounds Bi 2 Te 3 , Sb 2 Te 3 , and Bi 2 Se 3 , which as single crystals have distinct anisotropy in their electrical conductivity σ regarding the trigonal c -axis, whereas the Seebeck coefficient S is nearly iso...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2010-09, Vol.39 (9), p.1395-1398 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 9 |
container_start_page | 1395 |
container_title | Journal of electronic materials |
container_volume | 39 |
creator | Rothe, K. Stordeur, M. Leipner, H. S. |
description | The best films for thermoelectric applications near room temperature are based on the compounds Bi
2
Te
3
, Sb
2
Te
3
, and Bi
2
Se
3
, which as single crystals have distinct anisotropy in their electrical conductivity
σ
regarding the trigonal
c
-axis, whereas the Seebeck coefficient
S
is nearly isotropic. For
p
- and
n
-type alloys,
P
⊥c
>
P
||c
, and the power factors
P
⊥c
of single crystals are always higher compared with polycrystalline films, where the power factor is defined as
P
=
S
2
σ
, ⊥c and ||c are the direction perpendicular and parallel to the c-axis, respectively. For the first time in sputter-deposited
p
-type (Bi
0.15
Sb
0.85
)
2
Te
3
and
n
-type Bi
2
(Te
0.9
Se
0.1
)
3
thin films, the anisotropy of the electrical conductivity has been measured directly as it depends on the angle
φ
between the electrical current and the preferential orientation of the polycrystals (texture) using a standard four-probe method. The graphs of
σ
(
φ
) show the expected behavior, which can be described by a weighted mixture of
σ
⊥c
and
σ
||c
contributions. Because (
σ
⊥c
/
σ
||c
)
p
|
doi_str_mv | 10.1007/s11664-010-1329-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_750999546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139528071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-9d8154b54a34e48f2b0e69e380aa13bcbbfd74f5a7407a47be3a85ae5a5621cc3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A34LgYzS3SZr2cQ6nwkDBCuJLSNNUM7amJp2yf29Lhz75dL_OOfdwEDoHegWUyusIkKacUKAEWJITeYAmIDgjkKWvh2hCWQpEJEwco5MYV5SCgAwm6O3Jf9uAF9p0PuBZ46Lvgm932Ne4JcWutVg3FW7Gdu6bams692Vx8WHDxtu1NV1wBt848lySYti7Bi_cehNP0VGt19Ge7esUvSxui_k9WT7ePcxnS2IYFx3Jq6w3WgquGbc8q5OS2jS3LKNaAytNWdaV5LXQklOpuSwt05nQVmiRJmAMm6KLUbcN_nNrY6dWfhua_qWSguZ5Lnjag2AEmeBjDLZWbXAbHXYKqBoSVGOCig5zn6CSPedyL6yj0es66Ma4-EtMGO9D5AMuGXGxPzXvNvwZ-F_8B_8Zf9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750999546</pqid></control><display><type>article</type><title>Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films</title><source>SpringerNature Journals</source><creator>Rothe, K. ; Stordeur, M. ; Leipner, H. S.</creator><creatorcontrib>Rothe, K. ; Stordeur, M. ; Leipner, H. S.</creatorcontrib><description>The best films for thermoelectric applications near room temperature are based on the compounds Bi
2
Te
3
, Sb
2
Te
3
, and Bi
2
Se
3
, which as single crystals have distinct anisotropy in their electrical conductivity
σ
regarding the trigonal
c
-axis, whereas the Seebeck coefficient
S
is nearly isotropic. For
p
- and
n
-type alloys,
P
⊥c
>
P
||c
, and the power factors
P
⊥c
of single crystals are always higher compared with polycrystalline films, where the power factor is defined as
P
=
S
2
σ
, ⊥c and ||c are the direction perpendicular and parallel to the c-axis, respectively. For the first time in sputter-deposited
p
-type (Bi
0.15
Sb
0.85
)
2
Te
3
and
n
-type Bi
2
(Te
0.9
Se
0.1
)
3
thin films, the anisotropy of the electrical conductivity has been measured directly as it depends on the angle
φ
between the electrical current and the preferential orientation of the polycrystals (texture) using a standard four-probe method. The graphs of
σ
(
φ
) show the expected behavior, which can be described by a weighted mixture of
σ
⊥c
and
σ
||c
contributions. Because (
σ
⊥c
/
σ
||c
)
p
< (
σ
⊥c
/
σ
||c
)
n
, the
n
-type films have stronger anisotropy than the
p
-type films. For this reason, the angular weighted contributions of
P
||c
lead to a larger drop in the power factor of polycrystalline
n
-type films compared with
p
-type films.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-010-1329-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductivity ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Physics ; Single crystals ; Solid State Physics ; Temperature ; Thermoelectric effects ; Thin films</subject><ispartof>Journal of electronic materials, 2010-09, Vol.39 (9), p.1395-1398</ispartof><rights>TMS 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-9d8154b54a34e48f2b0e69e380aa13bcbbfd74f5a7407a47be3a85ae5a5621cc3</citedby><cites>FETCH-LOGICAL-c345t-9d8154b54a34e48f2b0e69e380aa13bcbbfd74f5a7407a47be3a85ae5a5621cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-010-1329-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-010-1329-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23415147$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothe, K.</creatorcontrib><creatorcontrib>Stordeur, M.</creatorcontrib><creatorcontrib>Leipner, H. S.</creatorcontrib><title>Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The best films for thermoelectric applications near room temperature are based on the compounds Bi
2
Te
3
, Sb
2
Te
3
, and Bi
2
Se
3
, which as single crystals have distinct anisotropy in their electrical conductivity
σ
regarding the trigonal
c
-axis, whereas the Seebeck coefficient
S
is nearly isotropic. For
p
- and
n
-type alloys,
P
⊥c
>
P
||c
, and the power factors
P
⊥c
of single crystals are always higher compared with polycrystalline films, where the power factor is defined as
P
=
S
2
σ
, ⊥c and ||c are the direction perpendicular and parallel to the c-axis, respectively. For the first time in sputter-deposited
p
-type (Bi
0.15
Sb
0.85
)
2
Te
3
and
n
-type Bi
2
(Te
0.9
Se
0.1
)
3
thin films, the anisotropy of the electrical conductivity has been measured directly as it depends on the angle
φ
between the electrical current and the preferential orientation of the polycrystals (texture) using a standard four-probe method. The graphs of
σ
(
φ
) show the expected behavior, which can be described by a weighted mixture of
σ
⊥c
and
σ
||c
contributions. Because (
σ
⊥c
/
σ
||c
)
p
< (
σ
⊥c
/
σ
||c
)
n
, the
n
-type films have stronger anisotropy than the
p
-type films. For this reason, the angular weighted contributions of
P
||c
lead to a larger drop in the power factor of polycrystalline
n
-type films compared with
p
-type films.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductivity</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Single crystals</subject><subject>Solid State Physics</subject><subject>Temperature</subject><subject>Thermoelectric effects</subject><subject>Thin films</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UF1LwzAUDaLgnP4A34LgYzS3SZr2cQ6nwkDBCuJLSNNUM7amJp2yf29Lhz75dL_OOfdwEDoHegWUyusIkKacUKAEWJITeYAmIDgjkKWvh2hCWQpEJEwco5MYV5SCgAwm6O3Jf9uAF9p0PuBZ46Lvgm932Ne4JcWutVg3FW7Gdu6bams692Vx8WHDxtu1NV1wBt848lySYti7Bi_cehNP0VGt19Ge7esUvSxui_k9WT7ePcxnS2IYFx3Jq6w3WgquGbc8q5OS2jS3LKNaAytNWdaV5LXQklOpuSwt05nQVmiRJmAMm6KLUbcN_nNrY6dWfhua_qWSguZ5Lnjag2AEmeBjDLZWbXAbHXYKqBoSVGOCig5zn6CSPedyL6yj0es66Ma4-EtMGO9D5AMuGXGxPzXvNvwZ-F_8B_8Zf9k</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Rothe, K.</creator><creator>Stordeur, M.</creator><creator>Leipner, H. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100901</creationdate><title>Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films</title><author>Rothe, K. ; Stordeur, M. ; Leipner, H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-9d8154b54a34e48f2b0e69e380aa13bcbbfd74f5a7407a47be3a85ae5a5621cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductivity</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Single crystals</topic><topic>Solid State Physics</topic><topic>Temperature</topic><topic>Thermoelectric effects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothe, K.</creatorcontrib><creatorcontrib>Stordeur, M.</creatorcontrib><creatorcontrib>Leipner, H. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothe, K.</au><au>Stordeur, M.</au><au>Leipner, H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>39</volume><issue>9</issue><spage>1395</spage><epage>1398</epage><pages>1395-1398</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The best films for thermoelectric applications near room temperature are based on the compounds Bi
2
Te
3
, Sb
2
Te
3
, and Bi
2
Se
3
, which as single crystals have distinct anisotropy in their electrical conductivity
σ
regarding the trigonal
c
-axis, whereas the Seebeck coefficient
S
is nearly isotropic. For
p
- and
n
-type alloys,
P
⊥c
>
P
||c
, and the power factors
P
⊥c
of single crystals are always higher compared with polycrystalline films, where the power factor is defined as
P
=
S
2
σ
, ⊥c and ||c are the direction perpendicular and parallel to the c-axis, respectively. For the first time in sputter-deposited
p
-type (Bi
0.15
Sb
0.85
)
2
Te
3
and
n
-type Bi
2
(Te
0.9
Se
0.1
)
3
thin films, the anisotropy of the electrical conductivity has been measured directly as it depends on the angle
φ
between the electrical current and the preferential orientation of the polycrystals (texture) using a standard four-probe method. The graphs of
σ
(
φ
) show the expected behavior, which can be described by a weighted mixture of
σ
⊥c
and
σ
||c
contributions. Because (
σ
⊥c
/
σ
||c
)
p
< (
σ
⊥c
/
σ
||c
)
n
, the
n
-type films have stronger anisotropy than the
p
-type films. For this reason, the angular weighted contributions of
P
||c
lead to a larger drop in the power factor of polycrystalline
n
-type films compared with
p
-type films.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-010-1329-7</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2010-09, Vol.39 (9), p.1395-1398 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_750999546 |
source | SpringerNature Journals |
subjects | Anisotropy Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Conductivity Cross-disciplinary physics: materials science rheology Deposition by sputtering Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport phenomena in thin films and low-dimensional structures Electronics and Microelectronics Exact sciences and technology Instrumentation Materials Science Methods of deposition of films and coatings film growth and epitaxy Optical and Electronic Materials Physics Single crystals Solid State Physics Temperature Thermoelectric effects Thin films |
title | Power Factor Anisotropy of p-Type and n-Type Conductive Thermoelectric Bi-Sb-Te Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Factor%20Anisotropy%20of%20p-Type%20and%20n-Type%20Conductive%20Thermoelectric%20Bi-Sb-Te%20Thin%20Films&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Rothe,%20K.&rft.date=2010-09-01&rft.volume=39&rft.issue=9&rft.spage=1395&rft.epage=1398&rft.pages=1395-1398&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-010-1329-7&rft_dat=%3Cproquest_cross%3E2139528071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750999546&rft_id=info:pmid/&rfr_iscdi=true |