Tube Formulas and Complex Dimensions of Self-Similar Tilings
We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fract...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2010-10, Vol.112 (1), p.91-136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Acta applicandae mathematicae |
container_volume | 112 |
creator | Lapidus, Michel L. Pearse, Erin P. J. |
description | We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169,
2007
) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ
d
. The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies
K
⊆ℝ
d
. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer
i
=0,1,…,
d
−1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings,
2006
). |
doi_str_mv | 10.1007/s10440-010-9562-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_750897773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139316621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqWwAGYRc8NzPv4MGKBCAakSg5ax5V8qV0lc7EYKu2EtrIxUQWLE6E3OvffpIHRN4JYAsLtEoCwBAwEsKprj4QTNSMVyLKCgp2gGhDLMgYhzdJHSDgAKQekM3W967bJliG3fqJSpzmaL0O4bN2SPvnVd8qFLWai_v9auqfHat75RMdv4xnfbdInOatUkd_V75-h9-bRZvODV2_Pr4mGFTVHxA3YiJwY4t5xpVRYmt5poZ0ptqGXUWFZww8Z_hAbNGXHUlbYURNjcVU5Vtpijm6l3H8NH79JB7kIfu3FSsgq4YIwVI0QmyMSQUnS13EffqvgpCcijJDlJkqMkeZQkhzGTT5k0st3Wxb_i_0M_Bepq1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750897773</pqid></control><display><type>article</type><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><source>Springer journals</source><creator>Lapidus, Michel L. ; Pearse, Erin P. J.</creator><creatorcontrib>Lapidus, Michel L. ; Pearse, Erin P. J.</creatorcontrib><description>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169,
2007
) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ
d
. The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies
K
⊆ℝ
d
. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer
i
=0,1,…,
d
−1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings,
2006
).</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-010-9562-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Euclidean geometry ; Euclidean space ; Fractal geometry ; Fractals ; Geometry ; Hypotheses ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Partial Differential Equations ; Power series ; Probability Theory and Stochastic Processes ; Self-similarity ; Strings ; Studies ; Tiling ; Topological manifolds</subject><ispartof>Acta applicandae mathematicae, 2010-10, Vol.112 (1), p.91-136</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</citedby><cites>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-010-9562-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-010-9562-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lapidus, Michel L.</creatorcontrib><creatorcontrib>Pearse, Erin P. J.</creatorcontrib><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169,
2007
) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ
d
. The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies
K
⊆ℝ
d
. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer
i
=0,1,…,
d
−1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings,
2006
).</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Geometry</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Partial Differential Equations</subject><subject>Power series</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Self-similarity</subject><subject>Strings</subject><subject>Studies</subject><subject>Tiling</subject><subject>Topological manifolds</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtOwzAURS0EEqWwAGYRc8NzPv4MGKBCAakSg5ax5V8qV0lc7EYKu2EtrIxUQWLE6E3OvffpIHRN4JYAsLtEoCwBAwEsKprj4QTNSMVyLKCgp2gGhDLMgYhzdJHSDgAKQekM3W967bJliG3fqJSpzmaL0O4bN2SPvnVd8qFLWai_v9auqfHat75RMdv4xnfbdInOatUkd_V75-h9-bRZvODV2_Pr4mGFTVHxA3YiJwY4t5xpVRYmt5poZ0ptqGXUWFZww8Z_hAbNGXHUlbYURNjcVU5Vtpijm6l3H8NH79JB7kIfu3FSsgq4YIwVI0QmyMSQUnS13EffqvgpCcijJDlJkqMkeZQkhzGTT5k0st3Wxb_i_0M_Bepq1g</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Lapidus, Michel L.</creator><creator>Pearse, Erin P. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><author>Lapidus, Michel L. ; Pearse, Erin P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Geometry</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Partial Differential Equations</topic><topic>Power series</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Self-similarity</topic><topic>Strings</topic><topic>Studies</topic><topic>Tiling</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapidus, Michel L.</creatorcontrib><creatorcontrib>Pearse, Erin P. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapidus, Michel L.</au><au>Pearse, Erin P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tube Formulas and Complex Dimensions of Self-Similar Tilings</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>112</volume><issue>1</issue><spage>91</spage><epage>136</epage><pages>91-136</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169,
2007
) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ
d
. The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies
K
⊆ℝ
d
. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer
i
=0,1,…,
d
−1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings,
2006
).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-010-9562-x</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2010-10, Vol.112 (1), p.91-136 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_750897773 |
source | Springer journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Euclidean geometry Euclidean space Fractal geometry Fractals Geometry Hypotheses Mathematical analysis Mathematics Mathematics and Statistics Neighborhoods Partial Differential Equations Power series Probability Theory and Stochastic Processes Self-similarity Strings Studies Tiling Topological manifolds |
title | Tube Formulas and Complex Dimensions of Self-Similar Tilings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tube%20Formulas%20and%20Complex%20Dimensions%20of%C2%A0Self-Similar%20Tilings&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Lapidus,%20Michel%20L.&rft.date=2010-10-01&rft.volume=112&rft.issue=1&rft.spage=91&rft.epage=136&rft.pages=91-136&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-010-9562-x&rft_dat=%3Cproquest_cross%3E2139316621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750897773&rft_id=info:pmid/&rfr_iscdi=true |