Tube Formulas and Complex Dimensions of Self-Similar Tilings

We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2010-10, Vol.112 (1), p.91-136
Hauptverfasser: Lapidus, Michel L., Pearse, Erin P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 91
container_title Acta applicandae mathematicae
container_volume 112
creator Lapidus, Michel L.
Pearse, Erin P. J.
description We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ d . The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies K ⊆ℝ d . Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i =0,1,…, d −1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006 ).
doi_str_mv 10.1007/s10440-010-9562-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_750897773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139316621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqWwAGYRc8NzPv4MGKBCAakSg5ax5V8qV0lc7EYKu2EtrIxUQWLE6E3OvffpIHRN4JYAsLtEoCwBAwEsKprj4QTNSMVyLKCgp2gGhDLMgYhzdJHSDgAKQekM3W967bJliG3fqJSpzmaL0O4bN2SPvnVd8qFLWai_v9auqfHat75RMdv4xnfbdInOatUkd_V75-h9-bRZvODV2_Pr4mGFTVHxA3YiJwY4t5xpVRYmt5poZ0ptqGXUWFZww8Z_hAbNGXHUlbYURNjcVU5Vtpijm6l3H8NH79JB7kIfu3FSsgq4YIwVI0QmyMSQUnS13EffqvgpCcijJDlJkqMkeZQkhzGTT5k0st3Wxb_i_0M_Bepq1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750897773</pqid></control><display><type>article</type><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><source>Springer journals</source><creator>Lapidus, Michel L. ; Pearse, Erin P. J.</creator><creatorcontrib>Lapidus, Michel L. ; Pearse, Erin P. J.</creatorcontrib><description>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ d . The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies K ⊆ℝ d . Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i =0,1,…, d −1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006 ).</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-010-9562-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Euclidean geometry ; Euclidean space ; Fractal geometry ; Fractals ; Geometry ; Hypotheses ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Partial Differential Equations ; Power series ; Probability Theory and Stochastic Processes ; Self-similarity ; Strings ; Studies ; Tiling ; Topological manifolds</subject><ispartof>Acta applicandae mathematicae, 2010-10, Vol.112 (1), p.91-136</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</citedby><cites>FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-010-9562-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-010-9562-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lapidus, Michel L.</creatorcontrib><creatorcontrib>Pearse, Erin P. J.</creatorcontrib><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ d . The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies K ⊆ℝ d . Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i =0,1,…, d −1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006 ).</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Geometry</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Partial Differential Equations</subject><subject>Power series</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Self-similarity</subject><subject>Strings</subject><subject>Studies</subject><subject>Tiling</subject><subject>Topological manifolds</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtOwzAURS0EEqWwAGYRc8NzPv4MGKBCAakSg5ax5V8qV0lc7EYKu2EtrIxUQWLE6E3OvffpIHRN4JYAsLtEoCwBAwEsKprj4QTNSMVyLKCgp2gGhDLMgYhzdJHSDgAKQekM3W967bJliG3fqJSpzmaL0O4bN2SPvnVd8qFLWai_v9auqfHat75RMdv4xnfbdInOatUkd_V75-h9-bRZvODV2_Pr4mGFTVHxA3YiJwY4t5xpVRYmt5poZ0ptqGXUWFZww8Z_hAbNGXHUlbYURNjcVU5Vtpijm6l3H8NH79JB7kIfu3FSsgq4YIwVI0QmyMSQUnS13EffqvgpCcijJDlJkqMkeZQkhzGTT5k0st3Wxb_i_0M_Bepq1g</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Lapidus, Michel L.</creator><creator>Pearse, Erin P. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>Tube Formulas and Complex Dimensions of Self-Similar Tilings</title><author>Lapidus, Michel L. ; Pearse, Erin P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e921c088d87ba43c2db1bec4bc6d76cd738c73969b0b871e6e4d4919d2e5ea5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Geometry</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Partial Differential Equations</topic><topic>Power series</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Self-similarity</topic><topic>Strings</topic><topic>Studies</topic><topic>Tiling</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapidus, Michel L.</creatorcontrib><creatorcontrib>Pearse, Erin P. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapidus, Michel L.</au><au>Pearse, Erin P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tube Formulas and Complex Dimensions of Self-Similar Tilings</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>112</volume><issue>1</issue><spage>91</spage><epage>136</epage><pages>91-136</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007 ) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝ d . The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies K ⊆ℝ d . Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i =0,1,…, d −1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006 ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-010-9562-x</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2010-10, Vol.112 (1), p.91-136
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_750897773
source Springer journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Euclidean geometry
Euclidean space
Fractal geometry
Fractals
Geometry
Hypotheses
Mathematical analysis
Mathematics
Mathematics and Statistics
Neighborhoods
Partial Differential Equations
Power series
Probability Theory and Stochastic Processes
Self-similarity
Strings
Studies
Tiling
Topological manifolds
title Tube Formulas and Complex Dimensions of Self-Similar Tilings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tube%20Formulas%20and%20Complex%20Dimensions%20of%C2%A0Self-Similar%20Tilings&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Lapidus,%20Michel%20L.&rft.date=2010-10-01&rft.volume=112&rft.issue=1&rft.spage=91&rft.epage=136&rft.pages=91-136&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-010-9562-x&rft_dat=%3Cproquest_cross%3E2139316621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750897773&rft_id=info:pmid/&rfr_iscdi=true