Riesz spaces of real continuous functions

An Archimedean Riesz space E is isomorphic to C ( X ) for some completely regular Hausdorff space X if and only if there exists a weak order unit e  > 0 for which E is e -uniformly complete, e -semisimple, e -separating and 2-universally e -complete.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2010-09, Vol.14 (3), p.473-480
Hauptverfasser: Montalvo, F., Pulgarín, A., Requejo, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 3
container_start_page 473
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 14
creator Montalvo, F.
Pulgarín, A.
Requejo, B.
description An Archimedean Riesz space E is isomorphic to C ( X ) for some completely regular Hausdorff space X if and only if there exists a weak order unit e  > 0 for which E is e -uniformly complete, e -semisimple, e -separating and 2-universally e -complete.
doi_str_mv 10.1007/s11117-009-0031-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_749616821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131097481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-9fd147a25cd9cebe08e499f2fe665cdb75e10db36fe4fa100cdb24a4563d2c763</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLg-vEDvBVvHqKZNE2aoyx-wYIgeg7ZdCJd1mbNtAf99Wap4MmBYYbHe2-Gx9gFiGsQwtwQlDJcCFu6Bq4P2AIaI7mVLRyWvW4bDtLKY3ZCtBGiqJRYsKuXHum7op0PSFWKVUa_rUIaxn6Y0kRVnIYw9mmgM3YU_Zbw_Heesrf7u9flI189Pzwtb1c81NCM3MYOlPGyCZ0NuEbRorI2yohaF2xtGgTRrWsdUUVfviiYVF41uu5kMLo-ZZez7y6nzwlpdJs05aGcdEZZDbqVUEgwk0JORBmj2-X-w-cvB8LtA3FzIK4E4vaBuL2xnDVUuMM75j_j_0U_91ZikA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749616821</pqid></control><display><type>article</type><title>Riesz spaces of real continuous functions</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Montalvo, F. ; Pulgarín, A. ; Requejo, B.</creator><creatorcontrib>Montalvo, F. ; Pulgarín, A. ; Requejo, B.</creatorcontrib><description>An Archimedean Riesz space E is isomorphic to C ( X ) for some completely regular Hausdorff space X if and only if there exists a weak order unit e  &gt; 0 for which E is e -uniformly complete, e -semisimple, e -separating and 2-universally e -complete.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-009-0031-6</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Lattice theory ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory ; Studies ; Topology ; Vector space</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.473-480</ispartof><rights>Birkhäuser Verlag Basel/Switzerland 2009</rights><rights>Springer Basel AG 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-9fd147a25cd9cebe08e499f2fe665cdb75e10db36fe4fa100cdb24a4563d2c763</citedby><cites>FETCH-LOGICAL-c315t-9fd147a25cd9cebe08e499f2fe665cdb75e10db36fe4fa100cdb24a4563d2c763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-009-0031-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-009-0031-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Montalvo, F.</creatorcontrib><creatorcontrib>Pulgarín, A.</creatorcontrib><creatorcontrib>Requejo, B.</creatorcontrib><title>Riesz spaces of real continuous functions</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>An Archimedean Riesz space E is isomorphic to C ( X ) for some completely regular Hausdorff space X if and only if there exists a weak order unit e  &gt; 0 for which E is e -uniformly complete, e -semisimple, e -separating and 2-universally e -complete.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Lattice theory</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Studies</subject><subject>Topology</subject><subject>Vector space</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLg-vEDvBVvHqKZNE2aoyx-wYIgeg7ZdCJd1mbNtAf99Wap4MmBYYbHe2-Gx9gFiGsQwtwQlDJcCFu6Bq4P2AIaI7mVLRyWvW4bDtLKY3ZCtBGiqJRYsKuXHum7op0PSFWKVUa_rUIaxn6Y0kRVnIYw9mmgM3YU_Zbw_Heesrf7u9flI189Pzwtb1c81NCM3MYOlPGyCZ0NuEbRorI2yohaF2xtGgTRrWsdUUVfviiYVF41uu5kMLo-ZZez7y6nzwlpdJs05aGcdEZZDbqVUEgwk0JORBmj2-X-w-cvB8LtA3FzIK4E4vaBuL2xnDVUuMM75j_j_0U_91ZikA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Montalvo, F.</creator><creator>Pulgarín, A.</creator><creator>Requejo, B.</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Riesz spaces of real continuous functions</title><author>Montalvo, F. ; Pulgarín, A. ; Requejo, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-9fd147a25cd9cebe08e499f2fe665cdb75e10db36fe4fa100cdb24a4563d2c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Lattice theory</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Studies</topic><topic>Topology</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montalvo, F.</creatorcontrib><creatorcontrib>Pulgarín, A.</creatorcontrib><creatorcontrib>Requejo, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montalvo, F.</au><au>Pulgarín, A.</au><au>Requejo, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riesz spaces of real continuous functions</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>473</spage><epage>480</epage><pages>473-480</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>An Archimedean Riesz space E is isomorphic to C ( X ) for some completely regular Hausdorff space X if and only if there exists a weak order unit e  &gt; 0 for which E is e -uniformly complete, e -semisimple, e -separating and 2-universally e -complete.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s11117-009-0031-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2010-09, Vol.14 (3), p.473-480
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_749616821
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
Econometrics
Fourier Analysis
Lattice theory
Mathematical functions
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
Studies
Topology
Vector space
title Riesz spaces of real continuous functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riesz%20spaces%20of%20real%20continuous%20functions&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Montalvo,%20F.&rft.date=2010-09-01&rft.volume=14&rft.issue=3&rft.spage=473&rft.epage=480&rft.pages=473-480&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-009-0031-6&rft_dat=%3Cproquest_cross%3E2131097481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749616821&rft_id=info:pmid/&rfr_iscdi=true