New families of mean graphs

Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is an assignment f : V(G) → {1, 2, 3, ... ,p + q} be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling [f.sup.*.sub.s] for an edge e = uv, an integer m ≥ 2 is defined by [MATHEMATICAL EXPRESSION...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematical combinatorics 2010-07, Vol.2, p.68
Hauptverfasser: Avadayappan, Selvam, Vasuki, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 68
container_title International journal of mathematical combinatorics
container_volume 2
creator Avadayappan, Selvam
Vasuki, R
description Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is an assignment f : V(G) → {1, 2, 3, ... ,p + q} be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling [f.sup.*.sub.s] for an edge e = uv, an integer m ≥ 2 is defined by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Then f is called a Smarandachely super m-mean labeling if f (V(G)) ∪ {[f.sup.*] (e) : e ∈ E(G)} = {1, 2, 3, ... ,p + q}. Particularly, in the case of m = 2, we know that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if m = 2. In this paper, we discuss two kinds of constructing larger mean graphs. Here we prove that ([P.sub.m]; [C.sub.n])m ≥ 1, n ≥ 3, ([P.sub.m]; [Q.sub.3])m ≥ 1,([P.sub.2n]; [S.sub.m])m ≥ 3, n ≥ 1 and for any n ≥ 1 ([P.sub.n]; [S.sub.1]), ([P.sub.n]; [S.sub.2]) are mean graphs. Also we establish that [[P.sub.m]; [C.sub.n]]m ≥ 1, n ≥ 3, [[P.sub.m]; [Q.sub.3]]m ≥ 1 and [[P.sub.m]; [C.sup.(2).sub.n]]m ≥ 1, n ≥ 3 are mean graphs. Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, super mean graph. AMS(2000): 05C78
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_748922384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A234934920</galeid><sourcerecordid>A234934920</sourcerecordid><originalsourceid>FETCH-LOGICAL-g934-37f559596d3edaf499ef1ec9df65878ce619a012a635a6b6239aeb68c94d460a3</originalsourceid><addsrcrecordid>eNp9jstKA0EQRRtRMEa_wM3gfqS7q1-1DMEXBN1kP1RmqscJ84jTCf6-DRGXUotbXA6n6kIsFIIvlTT-8m-39lrcpLSX0iKYsBD37_xdRBq6vuNUTLEYmMainenwmW7FVaQ-8d1vLsX2-Wm7fi03Hy9v69WmbLOjBB-tRYuuAW4oGkSOimtsorPBh5qdQpJKkwNLbuc0IPHOhRpNY5wkWIqHs_YwT18nTsdqP53mMV-svAmoNQTzP-QtaGl9hh7PUEs9V90Yp-NMdZ6Gh66eRo5d7lcaTH4ctYQfVzdSzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747532057</pqid></control><display><type>article</type><title>New families of mean graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Avadayappan, Selvam ; Vasuki, R</creator><creatorcontrib>Avadayappan, Selvam ; Vasuki, R</creatorcontrib><description>Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is an assignment f : V(G) → {1, 2, 3, ... ,p + q} be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling [f.sup.*.sub.s] for an edge e = uv, an integer m ≥ 2 is defined by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Then f is called a Smarandachely super m-mean labeling if f (V(G)) ∪ {[f.sup.*] (e) : e ∈ E(G)} = {1, 2, 3, ... ,p + q}. Particularly, in the case of m = 2, we know that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if m = 2. In this paper, we discuss two kinds of constructing larger mean graphs. Here we prove that ([P.sub.m]; [C.sub.n])m ≥ 1, n ≥ 3, ([P.sub.m]; [Q.sub.3])m ≥ 1,([P.sub.2n]; [S.sub.m])m ≥ 3, n ≥ 1 and for any n ≥ 1 ([P.sub.n]; [S.sub.1]), ([P.sub.n]; [S.sub.2]) are mean graphs. Also we establish that [[P.sub.m]; [C.sub.n]]m ≥ 1, n ≥ 3, [[P.sub.m]; [Q.sub.3]]m ≥ 1 and [[P.sub.m]; [C.sup.(2).sub.n]]m ≥ 1, n ≥ 3 are mean graphs. Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, super mean graph. AMS(2000): 05C78</description><identifier>ISSN: 1937-1055</identifier><identifier>EISSN: 1937-1047</identifier><language>eng</language><publisher>Gallup: Neutrosophic Sets and Systems</publisher><subject>Average ; Descriptive labeling ; Graph theory ; Labeling ; Number theory</subject><ispartof>International journal of mathematical combinatorics, 2010-07, Vol.2, p.68</ispartof><rights>COPYRIGHT 2010 Neutrosophic Sets and Systems</rights><rights>Copyright Science Seeking - distributor Jul 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Avadayappan, Selvam</creatorcontrib><creatorcontrib>Vasuki, R</creatorcontrib><title>New families of mean graphs</title><title>International journal of mathematical combinatorics</title><description>Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is an assignment f : V(G) → {1, 2, 3, ... ,p + q} be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling [f.sup.*.sub.s] for an edge e = uv, an integer m ≥ 2 is defined by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Then f is called a Smarandachely super m-mean labeling if f (V(G)) ∪ {[f.sup.*] (e) : e ∈ E(G)} = {1, 2, 3, ... ,p + q}. Particularly, in the case of m = 2, we know that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if m = 2. In this paper, we discuss two kinds of constructing larger mean graphs. Here we prove that ([P.sub.m]; [C.sub.n])m ≥ 1, n ≥ 3, ([P.sub.m]; [Q.sub.3])m ≥ 1,([P.sub.2n]; [S.sub.m])m ≥ 3, n ≥ 1 and for any n ≥ 1 ([P.sub.n]; [S.sub.1]), ([P.sub.n]; [S.sub.2]) are mean graphs. Also we establish that [[P.sub.m]; [C.sub.n]]m ≥ 1, n ≥ 3, [[P.sub.m]; [Q.sub.3]]m ≥ 1 and [[P.sub.m]; [C.sup.(2).sub.n]]m ≥ 1, n ≥ 3 are mean graphs. Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, super mean graph. AMS(2000): 05C78</description><subject>Average</subject><subject>Descriptive labeling</subject><subject>Graph theory</subject><subject>Labeling</subject><subject>Number theory</subject><issn>1937-1055</issn><issn>1937-1047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9jstKA0EQRRtRMEa_wM3gfqS7q1-1DMEXBN1kP1RmqscJ84jTCf6-DRGXUotbXA6n6kIsFIIvlTT-8m-39lrcpLSX0iKYsBD37_xdRBq6vuNUTLEYmMainenwmW7FVaQ-8d1vLsX2-Wm7fi03Hy9v69WmbLOjBB-tRYuuAW4oGkSOimtsorPBh5qdQpJKkwNLbuc0IPHOhRpNY5wkWIqHs_YwT18nTsdqP53mMV-svAmoNQTzP-QtaGl9hh7PUEs9V90Yp-NMdZ6Gh66eRo5d7lcaTH4ctYQfVzdSzQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Avadayappan, Selvam</creator><creator>Vasuki, R</creator><general>Neutrosophic Sets and Systems</general><general>Science Seeking - distributor</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100701</creationdate><title>New families of mean graphs</title><author>Avadayappan, Selvam ; Vasuki, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g934-37f559596d3edaf499ef1ec9df65878ce619a012a635a6b6239aeb68c94d460a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Average</topic><topic>Descriptive labeling</topic><topic>Graph theory</topic><topic>Labeling</topic><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Avadayappan, Selvam</creatorcontrib><creatorcontrib>Vasuki, R</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of mathematical combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avadayappan, Selvam</au><au>Vasuki, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New families of mean graphs</atitle><jtitle>International journal of mathematical combinatorics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>2</volume><spage>68</spage><pages>68-</pages><issn>1937-1055</issn><eissn>1937-1047</eissn><abstract>Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is an assignment f : V(G) → {1, 2, 3, ... ,p + q} be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling [f.sup.*.sub.s] for an edge e = uv, an integer m ≥ 2 is defined by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Then f is called a Smarandachely super m-mean labeling if f (V(G)) ∪ {[f.sup.*] (e) : e ∈ E(G)} = {1, 2, 3, ... ,p + q}. Particularly, in the case of m = 2, we know that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if m = 2. In this paper, we discuss two kinds of constructing larger mean graphs. Here we prove that ([P.sub.m]; [C.sub.n])m ≥ 1, n ≥ 3, ([P.sub.m]; [Q.sub.3])m ≥ 1,([P.sub.2n]; [S.sub.m])m ≥ 3, n ≥ 1 and for any n ≥ 1 ([P.sub.n]; [S.sub.1]), ([P.sub.n]; [S.sub.2]) are mean graphs. Also we establish that [[P.sub.m]; [C.sub.n]]m ≥ 1, n ≥ 3, [[P.sub.m]; [Q.sub.3]]m ≥ 1 and [[P.sub.m]; [C.sup.(2).sub.n]]m ≥ 1, n ≥ 3 are mean graphs. Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, super mean graph. AMS(2000): 05C78</abstract><cop>Gallup</cop><pub>Neutrosophic Sets and Systems</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-1055
ispartof International journal of mathematical combinatorics, 2010-07, Vol.2, p.68
issn 1937-1055
1937-1047
language eng
recordid cdi_proquest_journals_748922384
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Average
Descriptive labeling
Graph theory
Labeling
Number theory
title New families of mean graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20families%20of%20mean%20graphs&rft.jtitle=International%20journal%20of%20mathematical%20combinatorics&rft.au=Avadayappan,%20Selvam&rft.date=2010-07-01&rft.volume=2&rft.spage=68&rft.pages=68-&rft.issn=1937-1055&rft.eissn=1937-1047&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA234934920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747532057&rft_id=info:pmid/&rft_galeid=A234934920&rfr_iscdi=true