Wind Modulation of Dissolved Oxygen in Chesapeake Bay

A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2010-09, Vol.33 (5), p.1164-1175
1. Verfasser: Scully, Malcolm E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1175
container_issue 5
container_start_page 1164
container_title Estuaries and coasts
container_volume 33
creator Scully, Malcolm E.
description A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.
doi_str_mv 10.1007/s12237-010-9319-9
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_748034284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40863486</jstor_id><sourcerecordid>40863486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f53d80df34cd2d66a0544d0ea3520f8abeb9cd476a9918e3e5a7829f64c239143</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wIOwCB5XJ5lkNzlq_YRKL4rHkG6SurVuarIV--_dsqXePMwHzDvvDA8hpxQuKUB5lShjWOZAIVdIVa72yIAKoXJWIt3f9QwPyVFKcwAuBPABEW91Y7PnYFcL09ahyYLPbuuUwuLb2Wzys565JqubbPTuklk68-GyG7M-JgfeLJI72dYheb2_exk95uPJw9PoepxXWJRt7gVaCdYjryyzRWFAcG7BGRQMvDRTN1WV5WVhlKLSoROmlEz5glcMFeU4JOe97zKGr5VLrZ6HVWy6k7rkEpAzuRHRXlTFkFJ0Xi9j_WniWlPQGzi6h6M7OHoDp0tDcrE1NqkyCx9NU9Vpt8gQGS0k63Ss16Vu1Mxc_HvgP_Ozfmme2hB3phxkgbyLX1KRe8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748034284</pqid></control><display><type>article</type><title>Wind Modulation of Dissolved Oxygen in Chesapeake Bay</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Scully, Malcolm E.</creator><creatorcontrib>Scully, Malcolm E.</creatorcontrib><description>A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-010-9319-9</identifier><language>eng</language><publisher>New York: Spring Science + Business Media</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Bathymetry ; Biological and medical sciences ; Brackish water ecosystems ; Coastal Sciences ; Dissolved oxygen ; Earth and Environmental Science ; Ecology ; Environment ; Environmental Management ; Estuaries ; Freshwater &amp; Marine Ecology ; Fundamental and applied biological sciences. Psychology ; Hypoxia ; Mathematical models ; Modeling ; Oxygen ; Respiration ; Sea water ecosystems ; Shoals ; Simulation ; Surface water ; Synecology ; Water and Health ; Wind ; Wind direction ; Wind velocity</subject><ispartof>Estuaries and coasts, 2010-09, Vol.33 (5), p.1164-1175</ispartof><rights>2010 Coastal and Estuarine Research Federation</rights><rights>Coastal and Estuarine Research Federation 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f53d80df34cd2d66a0544d0ea3520f8abeb9cd476a9918e3e5a7829f64c239143</citedby><cites>FETCH-LOGICAL-c367t-f53d80df34cd2d66a0544d0ea3520f8abeb9cd476a9918e3e5a7829f64c239143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40863486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40863486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23321682$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scully, Malcolm E.</creatorcontrib><title>Wind Modulation of Dissolved Oxygen in Chesapeake Bay</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Bathymetry</subject><subject>Biological and medical sciences</subject><subject>Brackish water ecosystems</subject><subject>Coastal Sciences</subject><subject>Dissolved oxygen</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Estuaries</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hypoxia</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Oxygen</subject><subject>Respiration</subject><subject>Sea water ecosystems</subject><subject>Shoals</subject><subject>Simulation</subject><subject>Surface water</subject><subject>Synecology</subject><subject>Water and Health</subject><subject>Wind</subject><subject>Wind direction</subject><subject>Wind velocity</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wIOwCB5XJ5lkNzlq_YRKL4rHkG6SurVuarIV--_dsqXePMwHzDvvDA8hpxQuKUB5lShjWOZAIVdIVa72yIAKoXJWIt3f9QwPyVFKcwAuBPABEW91Y7PnYFcL09ahyYLPbuuUwuLb2Wzys565JqubbPTuklk68-GyG7M-JgfeLJI72dYheb2_exk95uPJw9PoepxXWJRt7gVaCdYjryyzRWFAcG7BGRQMvDRTN1WV5WVhlKLSoROmlEz5glcMFeU4JOe97zKGr5VLrZ6HVWy6k7rkEpAzuRHRXlTFkFJ0Xi9j_WniWlPQGzi6h6M7OHoDp0tDcrE1NqkyCx9NU9Vpt8gQGS0k63Ss16Vu1Mxc_HvgP_Ozfmme2hB3phxkgbyLX1KRe8g</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Scully, Malcolm E.</creator><general>Spring Science + Business Media</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Wind Modulation of Dissolved Oxygen in Chesapeake Bay</title><author>Scully, Malcolm E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f53d80df34cd2d66a0544d0ea3520f8abeb9cd476a9918e3e5a7829f64c239143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Bathymetry</topic><topic>Biological and medical sciences</topic><topic>Brackish water ecosystems</topic><topic>Coastal Sciences</topic><topic>Dissolved oxygen</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Estuaries</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hypoxia</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Oxygen</topic><topic>Respiration</topic><topic>Sea water ecosystems</topic><topic>Shoals</topic><topic>Simulation</topic><topic>Surface water</topic><topic>Synecology</topic><topic>Water and Health</topic><topic>Wind</topic><topic>Wind direction</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scully, Malcolm E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scully, Malcolm E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind Modulation of Dissolved Oxygen in Chesapeake Bay</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>33</volume><issue>5</issue><spage>1164</spage><epage>1175</epage><pages>1164-1175</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.</abstract><cop>New York</cop><pub>Spring Science + Business Media</pub><doi>10.1007/s12237-010-9319-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-2723
ispartof Estuaries and coasts, 2010-09, Vol.33 (5), p.1164-1175
issn 1559-2723
1559-2731
language eng
recordid cdi_proquest_journals_748034284
source Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Bathymetry
Biological and medical sciences
Brackish water ecosystems
Coastal Sciences
Dissolved oxygen
Earth and Environmental Science
Ecology
Environment
Environmental Management
Estuaries
Freshwater & Marine Ecology
Fundamental and applied biological sciences. Psychology
Hypoxia
Mathematical models
Modeling
Oxygen
Respiration
Sea water ecosystems
Shoals
Simulation
Surface water
Synecology
Water and Health
Wind
Wind direction
Wind velocity
title Wind Modulation of Dissolved Oxygen in Chesapeake Bay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20Modulation%20of%20Dissolved%20Oxygen%20in%20Chesapeake%20Bay&rft.jtitle=Estuaries%20and%20coasts&rft.au=Scully,%20Malcolm%20E.&rft.date=2010-09-01&rft.volume=33&rft.issue=5&rft.spage=1164&rft.epage=1175&rft.pages=1164-1175&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-010-9319-9&rft_dat=%3Cjstor_proqu%3E40863486%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748034284&rft_id=info:pmid/&rft_jstor_id=40863486&rfr_iscdi=true