Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow

We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the unifo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2010-11, Vol.63 (11), p.1469-1504
Hauptverfasser: Chen, Gui-Qiang G., Perepelitsa, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue 11
container_start_page 1469
container_title Communications on pure and applied mathematics
container_volume 63
creator Chen, Gui-Qiang G.
Perepelitsa, Mikhail
description We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_747528652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122200831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRxDk9-B8QEw8euj2gLe1Rp07Noib-OhLKwOG6MqGd7r-3brp48cIL732-H8JD6JBAjwDQvprLHgXG6BbqEMh5BIzQbdQBIBCxNIZdtBfCW3slccY6aPosKxsmtnrFCxuUC7Ze4tLObI2dwfVE41u5sNpHD7Wb6oD1eyNr66qAa7ca66bU_k_bOI-Vm829DsEWpcambOy4Pd3HPtoxsgz64Kd20dPlxePgKhrdDa8Hp6NIxQxolBEOADyWKi8S3bYyLjlTKue6iFPDU50VY5mmYx4rloAiMTOKU_r9_1yZlHXR0do79-690aEWb67xVfuk4DFPaJYmtIVO1pDyLgSvjZh7O5N-KQiIb5VoVylWq2zZ4x-hDEqWxstK2bAJUEYhIyRruf6a-7ClXv4vFIP7019ztE7YUOvPTUL6qUg544l4uR2KESP87ObxXDywL5vSkYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747528652</pqid></control><display><type>article</type><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</creator><creatorcontrib>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</creatorcontrib><description>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20332</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied mathematics ; Calculus of variations and optimal control ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; General mathematics ; General, history and biography ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Theoretical mathematics ; Viscosity</subject><ispartof>Communications on pure and applied mathematics, 2010-11, Vol.63 (11), p.1469-1504</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</citedby><cites>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23208118$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Gui-Qiang G.</creatorcontrib><creatorcontrib>Perepelitsa, Mikhail</creatorcontrib><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</description><subject>Applied mathematics</subject><subject>Calculus of variations and optimal control</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical mathematics</subject><subject>Viscosity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAUx4nRxDk9-B8QEw8euj2gLe1Rp07Noib-OhLKwOG6MqGd7r-3brp48cIL732-H8JD6JBAjwDQvprLHgXG6BbqEMh5BIzQbdQBIBCxNIZdtBfCW3slccY6aPosKxsmtnrFCxuUC7Ze4tLObI2dwfVE41u5sNpHD7Wb6oD1eyNr66qAa7ca66bU_k_bOI-Vm829DsEWpcambOy4Pd3HPtoxsgz64Kd20dPlxePgKhrdDa8Hp6NIxQxolBEOADyWKi8S3bYyLjlTKue6iFPDU50VY5mmYx4rloAiMTOKU_r9_1yZlHXR0do79-690aEWb67xVfuk4DFPaJYmtIVO1pDyLgSvjZh7O5N-KQiIb5VoVylWq2zZ4x-hDEqWxstK2bAJUEYhIyRruf6a-7ClXv4vFIP7019ztE7YUOvPTUL6qUg544l4uR2KESP87ObxXDywL5vSkYw</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Chen, Gui-Qiang G.</creator><creator>Perepelitsa, Mikhail</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201011</creationdate><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><author>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied mathematics</topic><topic>Calculus of variations and optimal control</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical mathematics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gui-Qiang G.</creatorcontrib><creatorcontrib>Perepelitsa, Mikhail</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gui-Qiang G.</au><au>Perepelitsa, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2010-11</date><risdate>2010</risdate><volume>63</volume><issue>11</issue><spage>1469</spage><epage>1504</epage><pages>1469-1504</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20332</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2010-11, Vol.63 (11), p.1469-1504
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_747528652
source Wiley Online Library Journals Frontfile Complete
subjects Applied mathematics
Calculus of variations and optimal control
Eulers equations
Exact sciences and technology
Fluid dynamics
General mathematics
General, history and biography
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
Theoretical mathematics
Viscosity
title Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20viscosity%20limit%20of%20the%20Navier-Stokes%20equations%20to%20the%20euler%20equations%20for%20compressible%20fluid%20flow&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Chen,%20Gui-Qiang%20G.&rft.date=2010-11&rft.volume=63&rft.issue=11&rft.spage=1469&rft.epage=1504&rft.pages=1469-1504&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20332&rft_dat=%3Cproquest_cross%3E2122200831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747528652&rft_id=info:pmid/&rfr_iscdi=true