Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the unifo...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2010-11, Vol.63 (11), p.1469-1504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1504 |
---|---|
container_issue | 11 |
container_start_page | 1469 |
container_title | Communications on pure and applied mathematics |
container_volume | 63 |
creator | Chen, Gui-Qiang G. Perepelitsa, Mikhail |
description | We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures.
To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation.
A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.20332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_747528652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122200831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRxDk9-B8QEw8euj2gLe1Rp07Noib-OhLKwOG6MqGd7r-3brp48cIL732-H8JD6JBAjwDQvprLHgXG6BbqEMh5BIzQbdQBIBCxNIZdtBfCW3slccY6aPosKxsmtnrFCxuUC7Ze4tLObI2dwfVE41u5sNpHD7Wb6oD1eyNr66qAa7ca66bU_k_bOI-Vm829DsEWpcambOy4Pd3HPtoxsgz64Kd20dPlxePgKhrdDa8Hp6NIxQxolBEOADyWKi8S3bYyLjlTKue6iFPDU50VY5mmYx4rloAiMTOKU_r9_1yZlHXR0do79-690aEWb67xVfuk4DFPaJYmtIVO1pDyLgSvjZh7O5N-KQiIb5VoVylWq2zZ4x-hDEqWxstK2bAJUEYhIyRruf6a-7ClXv4vFIP7019ztE7YUOvPTUL6qUg544l4uR2KESP87ObxXDywL5vSkYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747528652</pqid></control><display><type>article</type><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</creator><creatorcontrib>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</creatorcontrib><description>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures.
To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation.
A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20332</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied mathematics ; Calculus of variations and optimal control ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; General mathematics ; General, history and biography ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Theoretical mathematics ; Viscosity</subject><ispartof>Communications on pure and applied mathematics, 2010-11, Vol.63 (11), p.1469-1504</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</citedby><cites>FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23208118$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Gui-Qiang G.</creatorcontrib><creatorcontrib>Perepelitsa, Mikhail</creatorcontrib><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures.
To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation.
A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</description><subject>Applied mathematics</subject><subject>Calculus of variations and optimal control</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical mathematics</subject><subject>Viscosity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAUx4nRxDk9-B8QEw8euj2gLe1Rp07Noib-OhLKwOG6MqGd7r-3brp48cIL732-H8JD6JBAjwDQvprLHgXG6BbqEMh5BIzQbdQBIBCxNIZdtBfCW3slccY6aPosKxsmtnrFCxuUC7Ze4tLObI2dwfVE41u5sNpHD7Wb6oD1eyNr66qAa7ca66bU_k_bOI-Vm829DsEWpcambOy4Pd3HPtoxsgz64Kd20dPlxePgKhrdDa8Hp6NIxQxolBEOADyWKi8S3bYyLjlTKue6iFPDU50VY5mmYx4rloAiMTOKU_r9_1yZlHXR0do79-690aEWb67xVfuk4DFPaJYmtIVO1pDyLgSvjZh7O5N-KQiIb5VoVylWq2zZ4x-hDEqWxstK2bAJUEYhIyRruf6a-7ClXv4vFIP7019ztE7YUOvPTUL6qUg544l4uR2KESP87ObxXDywL5vSkYw</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Chen, Gui-Qiang G.</creator><creator>Perepelitsa, Mikhail</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201011</creationdate><title>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</title><author>Chen, Gui-Qiang G. ; Perepelitsa, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4302-81700074ac9b5e43087a73cc97eb46f76e8bda66d74c350c143fc72210029cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied mathematics</topic><topic>Calculus of variations and optimal control</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical mathematics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gui-Qiang G.</creatorcontrib><creatorcontrib>Perepelitsa, Mikhail</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gui-Qiang G.</au><au>Perepelitsa, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2010-11</date><risdate>2010</risdate><volume>63</volume><issue>11</issue><spage>1469</spage><epage>1504</epage><pages>1469-1504</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures.
To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H−1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation.
A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20332</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2010-11, Vol.63 (11), p.1469-1504 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_747528652 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied mathematics Calculus of variations and optimal control Eulers equations Exact sciences and technology Fluid dynamics General mathematics General, history and biography Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use Theoretical mathematics Viscosity |
title | Vanishing viscosity limit of the Navier-Stokes equations to the euler equations for compressible fluid flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20viscosity%20limit%20of%20the%20Navier-Stokes%20equations%20to%20the%20euler%20equations%20for%20compressible%20fluid%20flow&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Chen,%20Gui-Qiang%20G.&rft.date=2010-11&rft.volume=63&rft.issue=11&rft.spage=1469&rft.epage=1504&rft.pages=1469-1504&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20332&rft_dat=%3Cproquest_cross%3E2122200831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747528652&rft_id=info:pmid/&rfr_iscdi=true |