CHARACTERIZING GENERIC GLOBAL RIGIDITY

A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2010-08, Vol.132 (4), p.897-939
Hauptverfasser: Gortler, Steven J., Healy, Alexander D., Thurston, Dylan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue 4
container_start_page 897
container_title American journal of mathematics
container_volume 132
creator Gortler, Steven J.
Healy, Alexander D.
Thurston, Dylan P.
description A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.
doi_str_mv 10.1353/ajm.0.0132
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746766928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40864465</jstor_id><sourcerecordid>40864465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</originalsourceid><addsrcrecordid>eNpFkM1LwzAYxoMoOKcX78IQ9CB0vvloPo6zzq5QNpjzoJfQpimsbKsm3cH_3pSNecob-D3PAz-EbjGMMY3pc9FsxzAGTMkZGmCQEHEqxDkaAACJFCXiEl1534QvCCAD9JjMJstJspous69sno7S6TycySjNFy-TfLTM0uw1W31eo4u62Hh7c3yH6ONtukpmUb5Is2SSR4bFoosqweq6NmCtKA2VoiqJMdhCrEpJeY2VkrwmwGXMuSq5BaaYqipKKlIKIQwdovtD77drf_bWd7pp924XJrVgXIQUkQF6OkDGtd47W-tvt94W7ldj0L0GHTRo0L2GAD8cGwtvik3tip1Z-1OCUJBCcBw4dlpurOm2e2__x6lUhBL93ivtjWJgwSCOQ-zuEGt817pTLQPJGeMx_QO-IHDj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746766928</pqid></control><display><type>article</type><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</creator><creatorcontrib>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</creatorcontrib><description>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0132</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Coordinate systems ; Euclidean space ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Mathematical functions ; Mathematical manifolds ; Mathematical problems ; Mathematical vectors ; Mathematics ; Matrices ; Polynomials ; Randomized algorithms ; Sciences and techniques of general use ; Secant function ; Tangents ; Vertices</subject><ispartof>American journal of mathematics, 2010-08, Vol.132 (4), p.897-939</ispartof><rights>Copyright © 2010 The Johns Hopkins University Press</rights><rights>Copyright © 2010 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40864465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40864465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21126,27923,27924,56841,57401,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23087761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gortler, Steven J.</creatorcontrib><creatorcontrib>Healy, Alexander D.</creatorcontrib><creatorcontrib>Thurston, Dylan P.</creatorcontrib><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><title>American journal of mathematics</title><description>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</description><subject>Algebra</subject><subject>Coordinate systems</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Mathematical functions</subject><subject>Mathematical manifolds</subject><subject>Mathematical problems</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Polynomials</subject><subject>Randomized algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Secant function</subject><subject>Tangents</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1LwzAYxoMoOKcX78IQ9CB0vvloPo6zzq5QNpjzoJfQpimsbKsm3cH_3pSNecob-D3PAz-EbjGMMY3pc9FsxzAGTMkZGmCQEHEqxDkaAACJFCXiEl1534QvCCAD9JjMJstJspous69sno7S6TycySjNFy-TfLTM0uw1W31eo4u62Hh7c3yH6ONtukpmUb5Is2SSR4bFoosqweq6NmCtKA2VoiqJMdhCrEpJeY2VkrwmwGXMuSq5BaaYqipKKlIKIQwdovtD77drf_bWd7pp924XJrVgXIQUkQF6OkDGtd47W-tvt94W7ldj0L0GHTRo0L2GAD8cGwtvik3tip1Z-1OCUJBCcBw4dlpurOm2e2__x6lUhBL93ivtjWJgwSCOQ-zuEGt817pTLQPJGeMx_QO-IHDj</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Gortler, Steven J.</creator><creator>Healy, Alexander D.</creator><creator>Thurston, Dylan P.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><author>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Coordinate systems</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Mathematical functions</topic><topic>Mathematical manifolds</topic><topic>Mathematical problems</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Polynomials</topic><topic>Randomized algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Secant function</topic><topic>Tangents</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gortler, Steven J.</creatorcontrib><creatorcontrib>Healy, Alexander D.</creatorcontrib><creatorcontrib>Thurston, Dylan P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gortler, Steven J.</au><au>Healy, Alexander D.</au><au>Thurston, Dylan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARACTERIZING GENERIC GLOBAL RIGIDITY</atitle><jtitle>American journal of mathematics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>132</volume><issue>4</issue><spage>897</spage><epage>939</epage><pages>897-939</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0132</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2010-08, Vol.132 (4), p.897-939
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_746766928
source Project MUSE - Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Coordinate systems
Euclidean space
Exact sciences and technology
General mathematics
General, history and biography
Geometry
Mathematical functions
Mathematical manifolds
Mathematical problems
Mathematical vectors
Mathematics
Matrices
Polynomials
Randomized algorithms
Sciences and techniques of general use
Secant function
Tangents
Vertices
title CHARACTERIZING GENERIC GLOBAL RIGIDITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARACTERIZING%20GENERIC%20GLOBAL%20RIGIDITY&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Gortler,%20Steven%20J.&rft.date=2010-08-01&rft.volume=132&rft.issue=4&rft.spage=897&rft.epage=939&rft.pages=897-939&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0132&rft_dat=%3Cjstor_proqu%3E40864465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746766928&rft_id=info:pmid/&rft_jstor_id=40864465&rfr_iscdi=true