CHARACTERIZING GENERIC GLOBAL RIGIDITY
A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by pr...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2010-08, Vol.132 (4), p.897-939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 939 |
---|---|
container_issue | 4 |
container_start_page | 897 |
container_title | American journal of mathematics |
container_volume | 132 |
creator | Gortler, Steven J. Healy, Alexander D. Thurston, Dylan P. |
description | A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher. |
doi_str_mv | 10.1353/ajm.0.0132 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746766928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40864465</jstor_id><sourcerecordid>40864465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</originalsourceid><addsrcrecordid>eNpFkM1LwzAYxoMoOKcX78IQ9CB0vvloPo6zzq5QNpjzoJfQpimsbKsm3cH_3pSNecob-D3PAz-EbjGMMY3pc9FsxzAGTMkZGmCQEHEqxDkaAACJFCXiEl1534QvCCAD9JjMJstJspous69sno7S6TycySjNFy-TfLTM0uw1W31eo4u62Hh7c3yH6ONtukpmUb5Is2SSR4bFoosqweq6NmCtKA2VoiqJMdhCrEpJeY2VkrwmwGXMuSq5BaaYqipKKlIKIQwdovtD77drf_bWd7pp924XJrVgXIQUkQF6OkDGtd47W-tvt94W7ldj0L0GHTRo0L2GAD8cGwtvik3tip1Z-1OCUJBCcBw4dlpurOm2e2__x6lUhBL93ivtjWJgwSCOQ-zuEGt817pTLQPJGeMx_QO-IHDj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746766928</pqid></control><display><type>article</type><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</creator><creatorcontrib>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</creatorcontrib><description>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0132</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Coordinate systems ; Euclidean space ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Mathematical functions ; Mathematical manifolds ; Mathematical problems ; Mathematical vectors ; Mathematics ; Matrices ; Polynomials ; Randomized algorithms ; Sciences and techniques of general use ; Secant function ; Tangents ; Vertices</subject><ispartof>American journal of mathematics, 2010-08, Vol.132 (4), p.897-939</ispartof><rights>Copyright © 2010 The Johns Hopkins University Press</rights><rights>Copyright © 2010 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40864465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40864465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21126,27923,27924,56841,57401,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23087761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gortler, Steven J.</creatorcontrib><creatorcontrib>Healy, Alexander D.</creatorcontrib><creatorcontrib>Thurston, Dylan P.</creatorcontrib><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><title>American journal of mathematics</title><description>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</description><subject>Algebra</subject><subject>Coordinate systems</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Mathematical functions</subject><subject>Mathematical manifolds</subject><subject>Mathematical problems</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Polynomials</subject><subject>Randomized algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Secant function</subject><subject>Tangents</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1LwzAYxoMoOKcX78IQ9CB0vvloPo6zzq5QNpjzoJfQpimsbKsm3cH_3pSNecob-D3PAz-EbjGMMY3pc9FsxzAGTMkZGmCQEHEqxDkaAACJFCXiEl1534QvCCAD9JjMJstJspous69sno7S6TycySjNFy-TfLTM0uw1W31eo4u62Hh7c3yH6ONtukpmUb5Is2SSR4bFoosqweq6NmCtKA2VoiqJMdhCrEpJeY2VkrwmwGXMuSq5BaaYqipKKlIKIQwdovtD77drf_bWd7pp924XJrVgXIQUkQF6OkDGtd47W-tvt94W7ldj0L0GHTRo0L2GAD8cGwtvik3tip1Z-1OCUJBCcBw4dlpurOm2e2__x6lUhBL93ivtjWJgwSCOQ-zuEGt817pTLQPJGeMx_QO-IHDj</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Gortler, Steven J.</creator><creator>Healy, Alexander D.</creator><creator>Thurston, Dylan P.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>CHARACTERIZING GENERIC GLOBAL RIGIDITY</title><author>Gortler, Steven J. ; Healy, Alexander D. ; Thurston, Dylan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-d74fffc0ee7bc387db2cc1e059b836f19986f20685669b6e04949dd32d2b777c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Coordinate systems</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Mathematical functions</topic><topic>Mathematical manifolds</topic><topic>Mathematical problems</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Polynomials</topic><topic>Randomized algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Secant function</topic><topic>Tangents</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gortler, Steven J.</creatorcontrib><creatorcontrib>Healy, Alexander D.</creatorcontrib><creatorcontrib>Thurston, Dylan P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gortler, Steven J.</au><au>Healy, Alexander D.</au><au>Thurston, Dylan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARACTERIZING GENERIC GLOBAL RIGIDITY</atitle><jtitle>American journal of mathematics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>132</volume><issue>4</issue><spage>897</spage><epage>939</epage><pages>897-939</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>A d-dimensional framework is a graph and a map from its vertices to E d . Such a frame-work is globally rigid if it is the only framework in E d with the same graph and edge lengths, up to rigid motions. For which underlying graphs is a generic framework globally rigid? We answer this question by proving a conjecture by Connelly, that his sufficient condition is also necessary: a generic framework is globally rigid if and only if it has a stress matrix with kernel of dimension d + 1, the minimum possible. An alternate version of the condition comes from considering the geometry of the length-squared mapping l: the graph is generically locally rigid iff the rank of l is maximal, and it is generically globally rigid iff the rank of the Gauss map on the image of l is maximal. We also show that this condition is efficiently checkable with a randomized algorithm, and prove that if a graph is not generically globally rigid then it is flexible one dimension higher.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0132</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2010-08, Vol.132 (4), p.897-939 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_746766928 |
source | Project MUSE - Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Coordinate systems Euclidean space Exact sciences and technology General mathematics General, history and biography Geometry Mathematical functions Mathematical manifolds Mathematical problems Mathematical vectors Mathematics Matrices Polynomials Randomized algorithms Sciences and techniques of general use Secant function Tangents Vertices |
title | CHARACTERIZING GENERIC GLOBAL RIGIDITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARACTERIZING%20GENERIC%20GLOBAL%20RIGIDITY&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Gortler,%20Steven%20J.&rft.date=2010-08-01&rft.volume=132&rft.issue=4&rft.spage=897&rft.epage=939&rft.pages=897-939&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0132&rft_dat=%3Cjstor_proqu%3E40864465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746766928&rft_id=info:pmid/&rft_jstor_id=40864465&rfr_iscdi=true |