On computational search for optimistic solutions in bilevel problems

The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2010-09, Vol.48 (1), p.159-172
Hauptverfasser: Strekalovsky, Alexander S., Orlov, Andrey V., Malyshev, Anton V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 159
container_title Journal of global optimization
container_volume 48
creator Strekalovsky, Alexander S.
Orlov, Andrey V.
Malyshev, Anton V.
description The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.
doi_str_mv 10.1007/s10898-009-9514-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_744333550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112741111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</originalsourceid><addsrcrecordid>eNp1kE1PxCAURYnRxHH0B7gj7tEHlKEszfiZTDIbXRPKgDJpS4XWRH-9TGriytXbnHvvy0HoksI1BZA3mUKtagKgiBK0It9HaEGF5IQpujpGC1BMEAFAT9FZznsoYC3YAt1te2xjN0yjGUPsTYuzM8m-Yx8TjsMYupDHYHGO7XQAMg49bkLrPl2LhxSb1nX5HJ1402Z38XuX6PXh_mX9RDbbx-f17YZYTsVIVjXf1cxYC8Z7ybgXjdpJaWVFGWuYWZmaq8ZZZm3lubfMg3eyAcllZSR4vkRXc28Z_phcHvU-Tqk8nbWsKs65EFAgOkM2xZyT83pIoTPpS1PQB1d6dqWLAn1wpb9Lhs2ZXNj-zaW_4v9DPx_lbhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744333550</pqid></control><display><type>article</type><title>On computational search for optimistic solutions in bilevel problems</title><source>SpringerLink</source><creator>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</creator><creatorcontrib>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</creatorcontrib><description>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-009-9514-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer Science ; Convex analysis ; Linear programming ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Simulation ; Studies</subject><ispartof>Journal of global optimization, 2010-09, Vol.48 (1), p.159-172</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><rights>Springer Science+Business Media, LLC. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</citedby><cites>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-009-9514-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-009-9514-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Strekalovsky, Alexander S.</creatorcontrib><creatorcontrib>Orlov, Andrey V.</creatorcontrib><creatorcontrib>Malyshev, Anton V.</creatorcontrib><title>On computational search for optimistic solutions in bilevel problems</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convex analysis</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Simulation</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PxCAURYnRxHH0B7gj7tEHlKEszfiZTDIbXRPKgDJpS4XWRH-9TGriytXbnHvvy0HoksI1BZA3mUKtagKgiBK0It9HaEGF5IQpujpGC1BMEAFAT9FZznsoYC3YAt1te2xjN0yjGUPsTYuzM8m-Yx8TjsMYupDHYHGO7XQAMg49bkLrPl2LhxSb1nX5HJ1402Z38XuX6PXh_mX9RDbbx-f17YZYTsVIVjXf1cxYC8Z7ybgXjdpJaWVFGWuYWZmaq8ZZZm3lubfMg3eyAcllZSR4vkRXc28Z_phcHvU-Tqk8nbWsKs65EFAgOkM2xZyT83pIoTPpS1PQB1d6dqWLAn1wpb9Lhs2ZXNj-zaW_4v9DPx_lbhM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Strekalovsky, Alexander S.</creator><creator>Orlov, Andrey V.</creator><creator>Malyshev, Anton V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>On computational search for optimistic solutions in bilevel problems</title><author>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convex analysis</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strekalovsky, Alexander S.</creatorcontrib><creatorcontrib>Orlov, Andrey V.</creatorcontrib><creatorcontrib>Malyshev, Anton V.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strekalovsky, Alexander S.</au><au>Orlov, Andrey V.</au><au>Malyshev, Anton V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On computational search for optimistic solutions in bilevel problems</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>48</volume><issue>1</issue><spage>159</spage><epage>172</epage><pages>159-172</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-009-9514-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2010-09, Vol.48 (1), p.159-172
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_744333550
source SpringerLink
subjects Algorithms
Computer Science
Convex analysis
Linear programming
Mathematical programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Simulation
Studies
title On computational search for optimistic solutions in bilevel problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20computational%20search%20for%20optimistic%20solutions%20in%20bilevel%20problems&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Strekalovsky,%20Alexander%20S.&rft.date=2010-09-01&rft.volume=48&rft.issue=1&rft.spage=159&rft.epage=172&rft.pages=159-172&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-009-9514-z&rft_dat=%3Cproquest_cross%3E2112741111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744333550&rft_id=info:pmid/&rfr_iscdi=true