On computational search for optimistic solutions in bilevel problems
The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2010-09, Vol.48 (1), p.159-172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Journal of global optimization |
container_volume | 48 |
creator | Strekalovsky, Alexander S. Orlov, Andrey V. Malyshev, Anton V. |
description | The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed. |
doi_str_mv | 10.1007/s10898-009-9514-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_744333550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112741111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</originalsourceid><addsrcrecordid>eNp1kE1PxCAURYnRxHH0B7gj7tEHlKEszfiZTDIbXRPKgDJpS4XWRH-9TGriytXbnHvvy0HoksI1BZA3mUKtagKgiBK0It9HaEGF5IQpujpGC1BMEAFAT9FZznsoYC3YAt1te2xjN0yjGUPsTYuzM8m-Yx8TjsMYupDHYHGO7XQAMg49bkLrPl2LhxSb1nX5HJ1402Z38XuX6PXh_mX9RDbbx-f17YZYTsVIVjXf1cxYC8Z7ybgXjdpJaWVFGWuYWZmaq8ZZZm3lubfMg3eyAcllZSR4vkRXc28Z_phcHvU-Tqk8nbWsKs65EFAgOkM2xZyT83pIoTPpS1PQB1d6dqWLAn1wpb9Lhs2ZXNj-zaW_4v9DPx_lbhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744333550</pqid></control><display><type>article</type><title>On computational search for optimistic solutions in bilevel problems</title><source>SpringerLink</source><creator>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</creator><creatorcontrib>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</creatorcontrib><description>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-009-9514-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer Science ; Convex analysis ; Linear programming ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Simulation ; Studies</subject><ispartof>Journal of global optimization, 2010-09, Vol.48 (1), p.159-172</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><rights>Springer Science+Business Media, LLC. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</citedby><cites>FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-009-9514-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-009-9514-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Strekalovsky, Alexander S.</creatorcontrib><creatorcontrib>Orlov, Andrey V.</creatorcontrib><creatorcontrib>Malyshev, Anton V.</creatorcontrib><title>On computational search for optimistic solutions in bilevel problems</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convex analysis</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Simulation</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PxCAURYnRxHH0B7gj7tEHlKEszfiZTDIbXRPKgDJpS4XWRH-9TGriytXbnHvvy0HoksI1BZA3mUKtagKgiBK0It9HaEGF5IQpujpGC1BMEAFAT9FZznsoYC3YAt1te2xjN0yjGUPsTYuzM8m-Yx8TjsMYupDHYHGO7XQAMg49bkLrPl2LhxSb1nX5HJ1402Z38XuX6PXh_mX9RDbbx-f17YZYTsVIVjXf1cxYC8Z7ybgXjdpJaWVFGWuYWZmaq8ZZZm3lubfMg3eyAcllZSR4vkRXc28Z_phcHvU-Tqk8nbWsKs65EFAgOkM2xZyT83pIoTPpS1PQB1d6dqWLAn1wpb9Lhs2ZXNj-zaW_4v9DPx_lbhM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Strekalovsky, Alexander S.</creator><creator>Orlov, Andrey V.</creator><creator>Malyshev, Anton V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>On computational search for optimistic solutions in bilevel problems</title><author>Strekalovsky, Alexander S. ; Orlov, Andrey V. ; Malyshev, Anton V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-683d82acc0aff723f5b9d77c74122b2a6a839bec2cc4f3fc2f0fe7b07374a70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convex analysis</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strekalovsky, Alexander S.</creatorcontrib><creatorcontrib>Orlov, Andrey V.</creatorcontrib><creatorcontrib>Malyshev, Anton V.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strekalovsky, Alexander S.</au><au>Orlov, Andrey V.</au><au>Malyshev, Anton V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On computational search for optimistic solutions in bilevel problems</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>48</volume><issue>1</issue><spage>159</spage><epage>172</epage><pages>159-172</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The linear-linear and quadratic-linear bilevel programming problems are considered. Their optimistic statement is reduced to a nonconvex mathematical programming problem with the bilinear structure. Approximate algorithms of local and global search in the obtained problems are proposed. The results of computational solving randomly generated test problems are given and analyzed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-009-9514-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2010-09, Vol.48 (1), p.159-172 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_744333550 |
source | SpringerLink |
subjects | Algorithms Computer Science Convex analysis Linear programming Mathematical programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions Simulation Studies |
title | On computational search for optimistic solutions in bilevel problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20computational%20search%20for%20optimistic%20solutions%20in%20bilevel%20problems&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Strekalovsky,%20Alexander%20S.&rft.date=2010-09-01&rft.volume=48&rft.issue=1&rft.spage=159&rft.epage=172&rft.pages=159-172&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-009-9514-z&rft_dat=%3Cproquest_cross%3E2112741111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744333550&rft_id=info:pmid/&rfr_iscdi=true |