Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites
The microstructure of poly(butylene terephthalate) (PBT) nanocomposites was investigated by simultaneous small angle X‐ray scattering/wide angle X‐ray scattering (SAXS/WAXS) measurements at room temperature. The PBT was observed to crystallize in the α‐phase. The dispersion of single‐wall carbon nan...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2010-08, Vol.50 (8), p.1571-1576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1576 |
---|---|
container_issue | 8 |
container_start_page | 1571 |
container_title | Polymer engineering and science |
container_volume | 50 |
creator | Prado, L.A.S. de A. Kwiatkowska, M. Funari, S.S. Roslaniec, Z. Broza, G. Schulte, K. |
description | The microstructure of poly(butylene terephthalate) (PBT) nanocomposites was investigated by simultaneous small angle X‐ray scattering/wide angle X‐ray scattering (SAXS/WAXS) measurements at room temperature. The PBT was observed to crystallize in the α‐phase. The dispersion of single‐wall carbon nanotubes (SWCNTs) in PBT, using in situ polymerization, materials with higher degree of crystallinity than neat PBT were produced. SAXS results indicated that the SWCNT may be preferentially distributed in the amorphous phase of PBT, although WAXS results suggested a nucleation ability of SWCNT, which was supported by the DSC results. Much more complex changes were induced by the dispersion of multiwall carbon nanotubes (MWCNTs) in the PBT matrix. Evidence for the formation of an interphase with restricted chain mobility were found by dynamical mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) and WAXS showed an increase of the crystallinity of the nanocomposites in comparison to neat PBT. POLYM. ENG. SCI., 50:1571–1576, 2010. © 2010 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.21689 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_742481477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A234229727</galeid><sourcerecordid>A234229727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5759-821c5fcca60ea246f0cd32508e5915e8a41e8a4c370af1cb1dc4f88631a14ea43</originalsourceid><addsrcrecordid>eNp1km-LEzEQxhdRsJ6-8BssiuCB2-bf7mZfHsfZOzxP8ZR7GabZ2TbnNlmTLNpvb2rrYaESmAyT3_OEGSbLXlIypYSw2YB2ymglm0fZhJZCFqzi4nE2IYSzgkspn2bPQrgnieVlM8na2zi2BkPubL52fli53i03Odg2NzZiKkDA3HX54PrN28UYNz1azNMLDqu4gh4ins40-EUysGBdHBfJbZtptx5cMBHD8-xJB33AF_v7JPv2_uLr-WVx_Wl-dX52XeiyLptCMqrLTmuoCAITVUd0y1lJJJYNLVGCoNugeU2go3pBWy06KStOgQoEwU-yVzvfwbsfI4ao7t3obfpS1YIJSUVdJ-j1DlpCj8rYzkUPem2CVmeMC8aamm2p4gi1TL176J3FzqTyAT89wqfT4troo4LTA0FiIv6KSxhDUFe3Xw7Zd_-wizEYiyGFYJarGHaSY9bauxA8dmrwZg1-oyhR2y1RaUvUny1J7Jv9yCBo6DsPVpvwIGCclKTh29HOdtzP1Mfm_4bq88XNX-f9BE1IjT0owH9XVc3rUt3dzNXlh4-E1M1c3fHfiMrY6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>742481477</pqid></control><display><type>article</type><title>Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Prado, L.A.S. de A. ; Kwiatkowska, M. ; Funari, S.S. ; Roslaniec, Z. ; Broza, G. ; Schulte, K.</creator><creatorcontrib>Prado, L.A.S. de A. ; Kwiatkowska, M. ; Funari, S.S. ; Roslaniec, Z. ; Broza, G. ; Schulte, K.</creatorcontrib><description>The microstructure of poly(butylene terephthalate) (PBT) nanocomposites was investigated by simultaneous small angle X‐ray scattering/wide angle X‐ray scattering (SAXS/WAXS) measurements at room temperature. The PBT was observed to crystallize in the α‐phase. The dispersion of single‐wall carbon nanotubes (SWCNTs) in PBT, using in situ polymerization, materials with higher degree of crystallinity than neat PBT were produced. SAXS results indicated that the SWCNT may be preferentially distributed in the amorphous phase of PBT, although WAXS results suggested a nucleation ability of SWCNT, which was supported by the DSC results. Much more complex changes were induced by the dispersion of multiwall carbon nanotubes (MWCNTs) in the PBT matrix. Evidence for the formation of an interphase with restricted chain mobility were found by dynamical mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) and WAXS showed an increase of the crystallinity of the nanocomposites in comparison to neat PBT. POLYM. ENG. SCI., 50:1571–1576, 2010. © 2010 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21689</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Carbon ; Chemical properties ; Composite materials ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Mechanical properties ; Microstructure ; Morphology ; Nanocomposites ; Nanotechnology ; Nanotubes ; Polybutylene terephthalate ; Polymer industry, paints, wood ; Polymerization ; Scattering ; Technology application ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2010-08, Vol.50 (8), p.1571-1576</ispartof><rights>Copyright © 2010 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5759-821c5fcca60ea246f0cd32508e5915e8a41e8a4c370af1cb1dc4f88631a14ea43</citedby><cites>FETCH-LOGICAL-c5759-821c5fcca60ea246f0cd32508e5915e8a41e8a4c370af1cb1dc4f88631a14ea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23050934$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prado, L.A.S. de A.</creatorcontrib><creatorcontrib>Kwiatkowska, M.</creatorcontrib><creatorcontrib>Funari, S.S.</creatorcontrib><creatorcontrib>Roslaniec, Z.</creatorcontrib><creatorcontrib>Broza, G.</creatorcontrib><creatorcontrib>Schulte, K.</creatorcontrib><title>Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The microstructure of poly(butylene terephthalate) (PBT) nanocomposites was investigated by simultaneous small angle X‐ray scattering/wide angle X‐ray scattering (SAXS/WAXS) measurements at room temperature. The PBT was observed to crystallize in the α‐phase. The dispersion of single‐wall carbon nanotubes (SWCNTs) in PBT, using in situ polymerization, materials with higher degree of crystallinity than neat PBT were produced. SAXS results indicated that the SWCNT may be preferentially distributed in the amorphous phase of PBT, although WAXS results suggested a nucleation ability of SWCNT, which was supported by the DSC results. Much more complex changes were induced by the dispersion of multiwall carbon nanotubes (MWCNTs) in the PBT matrix. Evidence for the formation of an interphase with restricted chain mobility were found by dynamical mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) and WAXS showed an increase of the crystallinity of the nanocomposites in comparison to neat PBT. POLYM. ENG. SCI., 50:1571–1576, 2010. © 2010 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Polybutylene terephthalate</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>Scattering</subject><subject>Technology application</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1km-LEzEQxhdRsJ6-8BssiuCB2-bf7mZfHsfZOzxP8ZR7GabZ2TbnNlmTLNpvb2rrYaESmAyT3_OEGSbLXlIypYSw2YB2ymglm0fZhJZCFqzi4nE2IYSzgkspn2bPQrgnieVlM8na2zi2BkPubL52fli53i03Odg2NzZiKkDA3HX54PrN28UYNz1azNMLDqu4gh4ins40-EUysGBdHBfJbZtptx5cMBHD8-xJB33AF_v7JPv2_uLr-WVx_Wl-dX52XeiyLptCMqrLTmuoCAITVUd0y1lJJJYNLVGCoNugeU2go3pBWy06KStOgQoEwU-yVzvfwbsfI4ao7t3obfpS1YIJSUVdJ-j1DlpCj8rYzkUPem2CVmeMC8aamm2p4gi1TL176J3FzqTyAT89wqfT4troo4LTA0FiIv6KSxhDUFe3Xw7Zd_-wizEYiyGFYJarGHaSY9bauxA8dmrwZg1-oyhR2y1RaUvUny1J7Jv9yCBo6DsPVpvwIGCclKTh29HOdtzP1Mfm_4bq88XNX-f9BE1IjT0owH9XVc3rUt3dzNXlh4-E1M1c3fHfiMrY6A</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Prado, L.A.S. de A.</creator><creator>Kwiatkowska, M.</creator><creator>Funari, S.S.</creator><creator>Roslaniec, Z.</creator><creator>Broza, G.</creator><creator>Schulte, K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201008</creationdate><title>Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites</title><author>Prado, L.A.S. de A. ; Kwiatkowska, M. ; Funari, S.S. ; Roslaniec, Z. ; Broza, G. ; Schulte, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5759-821c5fcca60ea246f0cd32508e5915e8a41e8a4c370af1cb1dc4f88631a14ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Polybutylene terephthalate</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>Scattering</topic><topic>Technology application</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, L.A.S. de A.</creatorcontrib><creatorcontrib>Kwiatkowska, M.</creatorcontrib><creatorcontrib>Funari, S.S.</creatorcontrib><creatorcontrib>Roslaniec, Z.</creatorcontrib><creatorcontrib>Broza, G.</creatorcontrib><creatorcontrib>Schulte, K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, L.A.S. de A.</au><au>Kwiatkowska, M.</au><au>Funari, S.S.</au><au>Roslaniec, Z.</au><au>Broza, G.</au><au>Schulte, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2010-08</date><risdate>2010</risdate><volume>50</volume><issue>8</issue><spage>1571</spage><epage>1576</epage><pages>1571-1576</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The microstructure of poly(butylene terephthalate) (PBT) nanocomposites was investigated by simultaneous small angle X‐ray scattering/wide angle X‐ray scattering (SAXS/WAXS) measurements at room temperature. The PBT was observed to crystallize in the α‐phase. The dispersion of single‐wall carbon nanotubes (SWCNTs) in PBT, using in situ polymerization, materials with higher degree of crystallinity than neat PBT were produced. SAXS results indicated that the SWCNT may be preferentially distributed in the amorphous phase of PBT, although WAXS results suggested a nucleation ability of SWCNT, which was supported by the DSC results. Much more complex changes were induced by the dispersion of multiwall carbon nanotubes (MWCNTs) in the PBT matrix. Evidence for the formation of an interphase with restricted chain mobility were found by dynamical mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) and WAXS showed an increase of the crystallinity of the nanocomposites in comparison to neat PBT. POLYM. ENG. SCI., 50:1571–1576, 2010. © 2010 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21689</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2010-08, Vol.50 (8), p.1571-1576 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_742481477 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Carbon Chemical properties Composite materials Composites Exact sciences and technology Forms of application and semi-finished materials Mechanical properties Microstructure Morphology Nanocomposites Nanotechnology Nanotubes Polybutylene terephthalate Polymer industry, paints, wood Polymerization Scattering Technology application Technology of polymers |
title | Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20morphology%20and%20interphase%20of%20poly(butylene%20terephthalate)/carbon%20nanotubes%20nanocomposites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Prado,%20L.A.S.%20de%20A.&rft.date=2010-08&rft.volume=50&rft.issue=8&rft.spage=1571&rft.epage=1576&rft.pages=1571-1576&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21689&rft_dat=%3Cgale_proqu%3EA234229727%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=742481477&rft_id=info:pmid/&rft_galeid=A234229727&rfr_iscdi=true |