Interaction between cadmium, lead and potassium fertilizer (K₂SO₄) in a soil-plant system

A pot experiment was conducted to examine the influence of potassium (K) fertilizer (K₂SO₄) application on the phytoavailability and speciation distribution of cadmium (Cd) and lead (Pb) in soil. Spring wheat (Triticum aestivum L.) was selected as the test plant. There were seven treatments includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geochemistry and health 2007-10, Vol.29 (5), p.435-446
Hauptverfasser: Chen, Su, Sun, Lina, Sun, Tieheng, Chao, Lei, Guo, Guanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A pot experiment was conducted to examine the influence of potassium (K) fertilizer (K₂SO₄) application on the phytoavailability and speciation distribution of cadmium (Cd) and lead (Pb) in soil. Spring wheat (Triticum aestivum L.) was selected as the test plant. There were seven treatments including single and combined contamination of Cd and Pb. CdCl₂·2.5 H₂O and Pb(NO₃)₂ were added to the soil at the following dosages: Cd + Pb = 0.00 + 0.00, 5.00 + 0.00, 25.0 + 0.00, 0.00 + 500, 0.00 + 1000, 5.00 + 500 and 25.0 + 1000 mg kg-¹, denoted by CK, T1, T2, T3, T4, T5 and T6, respectively. The K fertilizer had five levels: 0.00, 50.0, 100, 200 and 400 mg K₂O kg-¹ soil, denoted by K0, K1, K2, K3 and K4, respectively. The results showed that the K fertilizer promoted the dry weight (DW) of wheat in all treatments and alleviated the contamination by Cd and Pb. The application of K₂SO₄ reduced the uptake of Cd in different parts including roots, haulms and grains of wheat; the optimum dosage was the K2 level. K supply resulted in a significant (P < 0.05) decrease in the soluble plus exchangeable (SE) fraction of Cd and there was a negative correlation (not significant, P > 0.05) between the levels of K and the SE fraction of Cd in soil. The application of the K fertilizer could obviously restrain the uptake of Pb by wheat and there were significant (P < 0.05) negative correlations between the concentrations of Pb in grains and the levels of K in soil. K supply resulted in a decrease in the SE fraction of Pb (except the K1 level) from the K0 to K4 levels. At the same time, the application of the K fertilizer induced a significant (P < 0.05) decrease in the weakly specifically adsorbed (WSA) fraction of Pb and a significant (P < 0.05) increase in the bound to Fe-Mn oxides (OX) fraction of Pb. At different K levels, the concentration of Pb in the roots, haulms and grains had a positive correlation with the SE (not significant, P > 0.05) and WSA (significant, P < 0.05) fractions of Pb in the soil. All the K application levels in this experiment reduced the phytoavailability of Cd and Pb. Thus, it is feasible to apply K fertilizer (K₂SO₄) to alleviate contamination by Cd and/or Pb in soil. Moreover, the level of K application should be considered to obtain an optimal effect with the minimum dosage.
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-007-9088-y