New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences

For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-08, Vol.56 (8), p.4061-4070
Hauptverfasser: Yu, Nam Yul, Gong, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4070
container_issue 8
container_start_page 4061
container_title IEEE transactions on information theory
container_volume 56
creator Yu, Nam Yul
Gong, Guang
description For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .
doi_str_mv 10.1109/TIT.2010.2050793
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_741121362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5508683</ieee_id><sourcerecordid>1671223377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYTCwp_ojjZKwqCpUKDC1itNzkrLpN4mInoP57krZiYDqd9LzvnR6EbikZUUqyx-VsOWKk2xgRRGb8DA2oEDLKEhGfowEhNI2yOE4v0VUIm26NBWUDtH2DHzxxdWh8mzfW1dgZ_BqN_R4v4KuFOgc81ZUtLQT8aZs1nrs-4D2U-sBPvatwswa8OFS0HvqKhS2grO3Wff_1hGt0YXQZ4OY0h-hj-rScvETz9-fZZDyPcs54E1GiTVEYRljMkkLLBEysNYgV8FWaG2kMy1Mpc8mNzGiagM54llEtisRwmhI-RA_H3p133enQqMqGHMpS1-DaoGgiKWOcS9mh9__QjWt93X2nZEwpozxhHUSOUO5dCB6M2nlbab9XlKhevurkq16-OsnvInfHiAWAP1wIkiYp579vLYCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741121362</pqid></control><display><type>article</type><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Nam Yul ; Gong, Guang</creator><creatorcontrib>Yu, Nam Yul ; Gong, Guang</creatorcontrib><description>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2050793</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Asymptotic properties ; Autocorrelation ; Binary sequences ; Columnar structure ; Construction ; Correlation ; Equations ; Equivalence ; Galois fields ; Information processing ; Information systems ; Lower bounds ; Mathematical analysis ; Mathematical models ; Polynomials ; polyphase sequences ; sequence family ; Sidelnikov sequences ; Weil bound</subject><ispartof>IEEE transactions on information theory, 2010-08, Vol.56 (8), p.4061-4070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</citedby><cites>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5508683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5508683$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Nam Yul</creatorcontrib><creatorcontrib>Gong, Guang</creatorcontrib><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</description><subject>Arrays</subject><subject>Asymptotic properties</subject><subject>Autocorrelation</subject><subject>Binary sequences</subject><subject>Columnar structure</subject><subject>Construction</subject><subject>Correlation</subject><subject>Equations</subject><subject>Equivalence</subject><subject>Galois fields</subject><subject>Information processing</subject><subject>Information systems</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>polyphase sequences</subject><subject>sequence family</subject><subject>Sidelnikov sequences</subject><subject>Weil bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYTCwp_ojjZKwqCpUKDC1itNzkrLpN4mInoP57krZiYDqd9LzvnR6EbikZUUqyx-VsOWKk2xgRRGb8DA2oEDLKEhGfowEhNI2yOE4v0VUIm26NBWUDtH2DHzxxdWh8mzfW1dgZ_BqN_R4v4KuFOgc81ZUtLQT8aZs1nrs-4D2U-sBPvatwswa8OFS0HvqKhS2grO3Wff_1hGt0YXQZ4OY0h-hj-rScvETz9-fZZDyPcs54E1GiTVEYRljMkkLLBEysNYgV8FWaG2kMy1Mpc8mNzGiagM54llEtisRwmhI-RA_H3p133enQqMqGHMpS1-DaoGgiKWOcS9mh9__QjWt93X2nZEwpozxhHUSOUO5dCB6M2nlbab9XlKhevurkq16-OsnvInfHiAWAP1wIkiYp579vLYCY</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Yu, Nam Yul</creator><creator>Gong, Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><author>Yu, Nam Yul ; Gong, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Asymptotic properties</topic><topic>Autocorrelation</topic><topic>Binary sequences</topic><topic>Columnar structure</topic><topic>Construction</topic><topic>Correlation</topic><topic>Equations</topic><topic>Equivalence</topic><topic>Galois fields</topic><topic>Information processing</topic><topic>Information systems</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>polyphase sequences</topic><topic>sequence family</topic><topic>Sidelnikov sequences</topic><topic>Weil bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Nam Yul</creatorcontrib><creatorcontrib>Gong, Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Nam Yul</au><au>Gong, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-08</date><risdate>2010</risdate><volume>56</volume><issue>8</issue><spage>4061</spage><epage>4070</epage><pages>4061-4070</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2050793</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2010-08, Vol.56 (8), p.4061-4070
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_741121362
source IEEE Electronic Library (IEL)
subjects Arrays
Asymptotic properties
Autocorrelation
Binary sequences
Columnar structure
Construction
Correlation
Equations
Equivalence
Galois fields
Information processing
Information systems
Lower bounds
Mathematical analysis
Mathematical models
Polynomials
polyphase sequences
sequence family
Sidelnikov sequences
Weil bound
title New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Construction%20of%20M-Ary%20Sequence%20Families%20With%20Low%20Correlation%20From%20the%20Structure%20of%20Sidelnikov%20Sequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yu,%20Nam%20Yul&rft.date=2010-08&rft.volume=56&rft.issue=8&rft.spage=4061&rft.epage=4070&rft.pages=4061-4070&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2050793&rft_dat=%3Cproquest_RIE%3E1671223377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741121362&rft_id=info:pmid/&rft_ieee_id=5508683&rfr_iscdi=true