New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences
For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2010-08, Vol.56 (8), p.4061-4070 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4070 |
---|---|
container_issue | 8 |
container_start_page | 4061 |
container_title | IEEE transactions on information theory |
container_volume | 56 |
creator | Yu, Nam Yul Gong, Guang |
description | For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p . |
doi_str_mv | 10.1109/TIT.2010.2050793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_741121362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5508683</ieee_id><sourcerecordid>1671223377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYTCwp_ojjZKwqCpUKDC1itNzkrLpN4mInoP57krZiYDqd9LzvnR6EbikZUUqyx-VsOWKk2xgRRGb8DA2oEDLKEhGfowEhNI2yOE4v0VUIm26NBWUDtH2DHzxxdWh8mzfW1dgZ_BqN_R4v4KuFOgc81ZUtLQT8aZs1nrs-4D2U-sBPvatwswa8OFS0HvqKhS2grO3Wff_1hGt0YXQZ4OY0h-hj-rScvETz9-fZZDyPcs54E1GiTVEYRljMkkLLBEysNYgV8FWaG2kMy1Mpc8mNzGiagM54llEtisRwmhI-RA_H3p133enQqMqGHMpS1-DaoGgiKWOcS9mh9__QjWt93X2nZEwpozxhHUSOUO5dCB6M2nlbab9XlKhevurkq16-OsnvInfHiAWAP1wIkiYp579vLYCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741121362</pqid></control><display><type>article</type><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Nam Yul ; Gong, Guang</creator><creatorcontrib>Yu, Nam Yul ; Gong, Guang</creatorcontrib><description>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2050793</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Asymptotic properties ; Autocorrelation ; Binary sequences ; Columnar structure ; Construction ; Correlation ; Equations ; Equivalence ; Galois fields ; Information processing ; Information systems ; Lower bounds ; Mathematical analysis ; Mathematical models ; Polynomials ; polyphase sequences ; sequence family ; Sidelnikov sequences ; Weil bound</subject><ispartof>IEEE transactions on information theory, 2010-08, Vol.56 (8), p.4061-4070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</citedby><cites>FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5508683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5508683$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Nam Yul</creatorcontrib><creatorcontrib>Gong, Guang</creatorcontrib><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</description><subject>Arrays</subject><subject>Asymptotic properties</subject><subject>Autocorrelation</subject><subject>Binary sequences</subject><subject>Columnar structure</subject><subject>Construction</subject><subject>Correlation</subject><subject>Equations</subject><subject>Equivalence</subject><subject>Galois fields</subject><subject>Information processing</subject><subject>Information systems</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>polyphase sequences</subject><subject>sequence family</subject><subject>Sidelnikov sequences</subject><subject>Weil bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYTCwp_ojjZKwqCpUKDC1itNzkrLpN4mInoP57krZiYDqd9LzvnR6EbikZUUqyx-VsOWKk2xgRRGb8DA2oEDLKEhGfowEhNI2yOE4v0VUIm26NBWUDtH2DHzxxdWh8mzfW1dgZ_BqN_R4v4KuFOgc81ZUtLQT8aZs1nrs-4D2U-sBPvatwswa8OFS0HvqKhS2grO3Wff_1hGt0YXQZ4OY0h-hj-rScvETz9-fZZDyPcs54E1GiTVEYRljMkkLLBEysNYgV8FWaG2kMy1Mpc8mNzGiagM54llEtisRwmhI-RA_H3p133enQqMqGHMpS1-DaoGgiKWOcS9mh9__QjWt93X2nZEwpozxhHUSOUO5dCB6M2nlbab9XlKhevurkq16-OsnvInfHiAWAP1wIkiYp579vLYCY</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Yu, Nam Yul</creator><creator>Gong, Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</title><author>Yu, Nam Yul ; Gong, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-10afddf202426da76ef4aae5be3b8cf7ff2c877c73f79186ea93991a5d6f31803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Asymptotic properties</topic><topic>Autocorrelation</topic><topic>Binary sequences</topic><topic>Columnar structure</topic><topic>Construction</topic><topic>Correlation</topic><topic>Equations</topic><topic>Equivalence</topic><topic>Galois fields</topic><topic>Information processing</topic><topic>Information systems</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>polyphase sequences</topic><topic>sequence family</topic><topic>Sidelnikov sequences</topic><topic>Weil bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Nam Yul</creatorcontrib><creatorcontrib>Gong, Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Nam Yul</au><au>Gong, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-08</date><risdate>2010</risdate><volume>56</volume><issue>8</issue><spage>4061</spage><epage>4070</epage><pages>4061-4070</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>For prime p and a positive integer m , it is shown that M -ary Sidelnikov sequences of period p 2m -1, if M | p m -1, can be equivalently generated by the operation of elements in a finite field GF(p m ), including a p m -ary m -sequence. From the (p m -1) ×( p m +1) array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new M -ary sequence families of period p m -1. In particular, new M -ary sequence families of period p m -1 are constructed from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new M -ary sequence family of period p m -1 and the maximum correlation magnitude 2√{p m }+6 asymptotically achieves √2 times the equality of the Sidelnikov's lower bound when M = p m -1 for odd prime p .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2050793</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2010-08, Vol.56 (8), p.4061-4070 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_741121362 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Asymptotic properties Autocorrelation Binary sequences Columnar structure Construction Correlation Equations Equivalence Galois fields Information processing Information systems Lower bounds Mathematical analysis Mathematical models Polynomials polyphase sequences sequence family Sidelnikov sequences Weil bound |
title | New Construction of M-Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Construction%20of%20M-Ary%20Sequence%20Families%20With%20Low%20Correlation%20From%20the%20Structure%20of%20Sidelnikov%20Sequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yu,%20Nam%20Yul&rft.date=2010-08&rft.volume=56&rft.issue=8&rft.spage=4061&rft.epage=4070&rft.pages=4061-4070&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2050793&rft_dat=%3Cproquest_RIE%3E1671223377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741121362&rft_id=info:pmid/&rft_ieee_id=5508683&rfr_iscdi=true |