Asymptotic normality of location invariant heavy tail index estimator

Motivated by Fraga Alves (Extremes 4:199–217, 2001 )’s work, a new class of location invariant Hill-type estimators for the tail index of a heavy tailed distribution is proposed in the paper. Its asymptotic behavior is derived, and the optimal choice of the sample fraction is discussed by mean squar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremes (Boston) 2010-09, Vol.13 (3), p.269-290
Hauptverfasser: Li, Jiaona, Peng, Zuoxiang, Nadarajah, Saralees
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 3
container_start_page 269
container_title Extremes (Boston)
container_volume 13
creator Li, Jiaona
Peng, Zuoxiang
Nadarajah, Saralees
description Motivated by Fraga Alves (Extremes 4:199–217, 2001 )’s work, a new class of location invariant Hill-type estimators for the tail index of a heavy tailed distribution is proposed in the paper. Its asymptotic behavior is derived, and the optimal choice of the sample fraction is discussed by mean squared error. Asymptotic comparisons and simulation studies are presented to show that the new estimator performs well compared to the known ones.
doi_str_mv 10.1007/s10687-009-0088-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_734710678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099014431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-491ef2498d1a4072ad636e14c4665253ada38a20b808c92c98e8ff412c05d9053</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN3gPpr3Y1lKfUDBjYK7EDMZTZlOapIW59-bMoIrF5d7uZxzz-UD4BqjW4yQvMsYCSUhQrqWUpCdgBnmkkCN-dtpnakSEGutz8FFzhtUPVjwGVgt8rjdlViCa4aYtrYPZWxi1_TR2RLi0IThYFOwQ2k-vT2MTbGhr8vWfzc-l7C1JaZLcNbZPvur3z4Hr_erl-UjXD8_PC0Xa-go5gUyjX1HmFYttgxJYltBhcfMMSE44dS2lipL0LtCymnitPKq6xgmDvFWI07n4Ga6u0vxa1_jzSbu01AjjaRMVgZSVRGeRC7FnJPvzC7VN9NoMDJHWGaCZSosc4RlWPWQyZOrdvjw6e_w_6YfholsYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734710678</pqid></control><display><type>article</type><title>Asymptotic normality of location invariant heavy tail index estimator</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Li, Jiaona ; Peng, Zuoxiang ; Nadarajah, Saralees</creator><creatorcontrib>Li, Jiaona ; Peng, Zuoxiang ; Nadarajah, Saralees</creatorcontrib><description>Motivated by Fraga Alves (Extremes 4:199–217, 2001 )’s work, a new class of location invariant Hill-type estimators for the tail index of a heavy tailed distribution is proposed in the paper. Its asymptotic behavior is derived, and the optimal choice of the sample fraction is discussed by mean squared error. Asymptotic comparisons and simulation studies are presented to show that the new estimator performs well compared to the known ones.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-009-0088-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Civil Engineering ; Economics ; Environmental Management ; Estimating techniques ; Finance ; Hydrogeology ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Quality Control ; Random variables ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Extremes (Boston), 2010-09, Vol.13 (3), p.269-290</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-491ef2498d1a4072ad636e14c4665253ada38a20b808c92c98e8ff412c05d9053</citedby><cites>FETCH-LOGICAL-c315t-491ef2498d1a4072ad636e14c4665253ada38a20b808c92c98e8ff412c05d9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10687-009-0088-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10687-009-0088-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Jiaona</creatorcontrib><creatorcontrib>Peng, Zuoxiang</creatorcontrib><creatorcontrib>Nadarajah, Saralees</creatorcontrib><title>Asymptotic normality of location invariant heavy tail index estimator</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>Motivated by Fraga Alves (Extremes 4:199–217, 2001 )’s work, a new class of location invariant Hill-type estimators for the tail index of a heavy tailed distribution is proposed in the paper. Its asymptotic behavior is derived, and the optimal choice of the sample fraction is discussed by mean squared error. Asymptotic comparisons and simulation studies are presented to show that the new estimator performs well compared to the known ones.</description><subject>Civil Engineering</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Estimating techniques</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quality Control</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN3gPpr3Y1lKfUDBjYK7EDMZTZlOapIW59-bMoIrF5d7uZxzz-UD4BqjW4yQvMsYCSUhQrqWUpCdgBnmkkCN-dtpnakSEGutz8FFzhtUPVjwGVgt8rjdlViCa4aYtrYPZWxi1_TR2RLi0IThYFOwQ2k-vT2MTbGhr8vWfzc-l7C1JaZLcNbZPvur3z4Hr_erl-UjXD8_PC0Xa-go5gUyjX1HmFYttgxJYltBhcfMMSE44dS2lipL0LtCymnitPKq6xgmDvFWI07n4Ga6u0vxa1_jzSbu01AjjaRMVgZSVRGeRC7FnJPvzC7VN9NoMDJHWGaCZSosc4RlWPWQyZOrdvjw6e_w_6YfholsYQ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Li, Jiaona</creator><creator>Peng, Zuoxiang</creator><creator>Nadarajah, Saralees</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Asymptotic normality of location invariant heavy tail index estimator</title><author>Li, Jiaona ; Peng, Zuoxiang ; Nadarajah, Saralees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-491ef2498d1a4072ad636e14c4665253ada38a20b808c92c98e8ff412c05d9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Civil Engineering</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Estimating techniques</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quality Control</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiaona</creatorcontrib><creatorcontrib>Peng, Zuoxiang</creatorcontrib><creatorcontrib>Nadarajah, Saralees</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiaona</au><au>Peng, Zuoxiang</au><au>Nadarajah, Saralees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic normality of location invariant heavy tail index estimator</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>13</volume><issue>3</issue><spage>269</spage><epage>290</epage><pages>269-290</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>Motivated by Fraga Alves (Extremes 4:199–217, 2001 )’s work, a new class of location invariant Hill-type estimators for the tail index of a heavy tailed distribution is proposed in the paper. Its asymptotic behavior is derived, and the optimal choice of the sample fraction is discussed by mean squared error. Asymptotic comparisons and simulation studies are presented to show that the new estimator performs well compared to the known ones.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10687-009-0088-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-1999
ispartof Extremes (Boston), 2010-09, Vol.13 (3), p.269-290
issn 1386-1999
1572-915X
language eng
recordid cdi_proquest_journals_734710678
source SpringerLink Journals; Business Source Complete
subjects Civil Engineering
Economics
Environmental Management
Estimating techniques
Finance
Hydrogeology
Insurance
Management
Mathematics
Mathematics and Statistics
Quality Control
Random variables
Reliability
Safety and Risk
Statistics
Statistics for Business
Studies
title Asymptotic normality of location invariant heavy tail index estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20normality%20of%20location%20invariant%20heavy%20tail%20index%20estimator&rft.jtitle=Extremes%20(Boston)&rft.au=Li,%20Jiaona&rft.date=2010-09-01&rft.volume=13&rft.issue=3&rft.spage=269&rft.epage=290&rft.pages=269-290&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-009-0088-4&rft_dat=%3Cproquest_cross%3E2099014431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734710678&rft_id=info:pmid/&rfr_iscdi=true