Bayesian spatial modelling of gamma ray count data
Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists...
Gespeichert in:
Veröffentlicht in: | Mathematical geology 2006-02, Vol.38 (2), p.135-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Mathematical geology |
container_volume | 38 |
creator | LEONTE, Daniela NOTT, David J |
description | Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations. |
doi_str_mv | 10.1007/s11004-005-9008-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_728070974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092820411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN0gqKto7mSS3Cy1-IKCG12H20ymTJlHncws-u9NqSC4cHU23znc-zF2CeIOhDD3EVIUXAjFrRDI9RGbgTKSI2o8ZjOBmHOEHE7ZWYwbkRhj1Yzlj7QLsaYui1saa2qyti9D09TdOuurbE1tS9lAu8z3UzdmJY10zk4qamK4-Mk5-3x--li88uX7y9viYclJIo7cgjGkbQC9gtIKqKQSAaCoVpX3VpMEaVeFKoxHo1SZl560JBsshpUFtHLObg-726H_mkIcXVtHn26jLvRTdKi00QoUJvLmXzK3hUVh9uDVH3DTT0OXvnAmT4SwpkgQHCA_9DEOoXLboW5p2DkQbi_bHWS7JNvtZTudOtc_wxQ9NdVAna_jbxGFNBKs_AbDN3xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>728070974</pqid></control><display><type>article</type><title>Bayesian spatial modelling of gamma ray count data</title><source>SpringerLink Journals - AutoHoldings</source><creator>LEONTE, Daniela ; NOTT, David J</creator><creatorcontrib>LEONTE, Daniela ; NOTT, David J</creatorcontrib><description>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</description><identifier>ISSN: 0882-8121</identifier><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1573-8868</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-005-9008-6</identifier><identifier>CODEN: MATGED</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied geophysics ; Boreholes ; Earth sciences ; Earth, ocean, space ; Environmental engineering ; Exact sciences and technology ; Gamma rays ; Geophysical studies ; Internal geophysics ; Lithology ; Spatial analysis ; Stratigraphy</subject><ispartof>Mathematical geology, 2006-02, Vol.38 (2), p.135-154</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</citedby><cites>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18037319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEONTE, Daniela</creatorcontrib><creatorcontrib>NOTT, David J</creatorcontrib><title>Bayesian spatial modelling of gamma ray count data</title><title>Mathematical geology</title><description>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</description><subject>Applied geophysics</subject><subject>Boreholes</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Gamma rays</subject><subject>Geophysical studies</subject><subject>Internal geophysics</subject><subject>Lithology</subject><subject>Spatial analysis</subject><subject>Stratigraphy</subject><issn>0882-8121</issn><issn>1874-8961</issn><issn>1573-8868</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN0gqKto7mSS3Cy1-IKCG12H20ymTJlHncws-u9NqSC4cHU23znc-zF2CeIOhDD3EVIUXAjFrRDI9RGbgTKSI2o8ZjOBmHOEHE7ZWYwbkRhj1Yzlj7QLsaYui1saa2qyti9D09TdOuurbE1tS9lAu8z3UzdmJY10zk4qamK4-Mk5-3x--li88uX7y9viYclJIo7cgjGkbQC9gtIKqKQSAaCoVpX3VpMEaVeFKoxHo1SZl560JBsshpUFtHLObg-726H_mkIcXVtHn26jLvRTdKi00QoUJvLmXzK3hUVh9uDVH3DTT0OXvnAmT4SwpkgQHCA_9DEOoXLboW5p2DkQbi_bHWS7JNvtZTudOtc_wxQ9NdVAna_jbxGFNBKs_AbDN3xg</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>LEONTE, Daniela</creator><creator>NOTT, David J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20060201</creationdate><title>Bayesian spatial modelling of gamma ray count data</title><author>LEONTE, Daniela ; NOTT, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied geophysics</topic><topic>Boreholes</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Gamma rays</topic><topic>Geophysical studies</topic><topic>Internal geophysics</topic><topic>Lithology</topic><topic>Spatial analysis</topic><topic>Stratigraphy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEONTE, Daniela</creatorcontrib><creatorcontrib>NOTT, David J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEONTE, Daniela</au><au>NOTT, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian spatial modelling of gamma ray count data</atitle><jtitle>Mathematical geology</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>38</volume><issue>2</issue><spage>135</spage><epage>154</epage><pages>135-154</pages><issn>0882-8121</issn><issn>1874-8961</issn><eissn>1573-8868</eissn><eissn>1874-8953</eissn><coden>MATGED</coden><abstract>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11004-005-9008-6</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8121 |
ispartof | Mathematical geology, 2006-02, Vol.38 (2), p.135-154 |
issn | 0882-8121 1874-8961 1573-8868 1874-8953 |
language | eng |
recordid | cdi_proquest_journals_728070974 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied geophysics Boreholes Earth sciences Earth, ocean, space Environmental engineering Exact sciences and technology Gamma rays Geophysical studies Internal geophysics Lithology Spatial analysis Stratigraphy |
title | Bayesian spatial modelling of gamma ray count data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20spatial%20modelling%20of%20gamma%20ray%20count%20data&rft.jtitle=Mathematical%20geology&rft.au=LEONTE,%20Daniela&rft.date=2006-02-01&rft.volume=38&rft.issue=2&rft.spage=135&rft.epage=154&rft.pages=135-154&rft.issn=0882-8121&rft.eissn=1573-8868&rft.coden=MATGED&rft_id=info:doi/10.1007/s11004-005-9008-6&rft_dat=%3Cproquest_cross%3E2092820411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=728070974&rft_id=info:pmid/&rfr_iscdi=true |