Bayesian spatial modelling of gamma ray count data

Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geology 2006-02, Vol.38 (2), p.135-154
Hauptverfasser: LEONTE, Daniela, NOTT, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 135
container_title Mathematical geology
container_volume 38
creator LEONTE, Daniela
NOTT, David J
description Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.
doi_str_mv 10.1007/s11004-005-9008-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_728070974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092820411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN0gqKto7mSS3Cy1-IKCG12H20ymTJlHncws-u9NqSC4cHU23znc-zF2CeIOhDD3EVIUXAjFrRDI9RGbgTKSI2o8ZjOBmHOEHE7ZWYwbkRhj1Yzlj7QLsaYui1saa2qyti9D09TdOuurbE1tS9lAu8z3UzdmJY10zk4qamK4-Mk5-3x--li88uX7y9viYclJIo7cgjGkbQC9gtIKqKQSAaCoVpX3VpMEaVeFKoxHo1SZl560JBsshpUFtHLObg-726H_mkIcXVtHn26jLvRTdKi00QoUJvLmXzK3hUVh9uDVH3DTT0OXvnAmT4SwpkgQHCA_9DEOoXLboW5p2DkQbi_bHWS7JNvtZTudOtc_wxQ9NdVAna_jbxGFNBKs_AbDN3xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>728070974</pqid></control><display><type>article</type><title>Bayesian spatial modelling of gamma ray count data</title><source>SpringerLink Journals - AutoHoldings</source><creator>LEONTE, Daniela ; NOTT, David J</creator><creatorcontrib>LEONTE, Daniela ; NOTT, David J</creatorcontrib><description>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</description><identifier>ISSN: 0882-8121</identifier><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1573-8868</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-005-9008-6</identifier><identifier>CODEN: MATGED</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied geophysics ; Boreholes ; Earth sciences ; Earth, ocean, space ; Environmental engineering ; Exact sciences and technology ; Gamma rays ; Geophysical studies ; Internal geophysics ; Lithology ; Spatial analysis ; Stratigraphy</subject><ispartof>Mathematical geology, 2006-02, Vol.38 (2), p.135-154</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</citedby><cites>FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18037319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEONTE, Daniela</creatorcontrib><creatorcontrib>NOTT, David J</creatorcontrib><title>Bayesian spatial modelling of gamma ray count data</title><title>Mathematical geology</title><description>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</description><subject>Applied geophysics</subject><subject>Boreholes</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Gamma rays</subject><subject>Geophysical studies</subject><subject>Internal geophysics</subject><subject>Lithology</subject><subject>Spatial analysis</subject><subject>Stratigraphy</subject><issn>0882-8121</issn><issn>1874-8961</issn><issn>1573-8868</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN0gqKto7mSS3Cy1-IKCG12H20ymTJlHncws-u9NqSC4cHU23znc-zF2CeIOhDD3EVIUXAjFrRDI9RGbgTKSI2o8ZjOBmHOEHE7ZWYwbkRhj1Yzlj7QLsaYui1saa2qyti9D09TdOuurbE1tS9lAu8z3UzdmJY10zk4qamK4-Mk5-3x--li88uX7y9viYclJIo7cgjGkbQC9gtIKqKQSAaCoVpX3VpMEaVeFKoxHo1SZl560JBsshpUFtHLObg-726H_mkIcXVtHn26jLvRTdKi00QoUJvLmXzK3hUVh9uDVH3DTT0OXvnAmT4SwpkgQHCA_9DEOoXLboW5p2DkQbi_bHWS7JNvtZTudOtc_wxQ9NdVAna_jbxGFNBKs_AbDN3xg</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>LEONTE, Daniela</creator><creator>NOTT, David J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20060201</creationdate><title>Bayesian spatial modelling of gamma ray count data</title><author>LEONTE, Daniela ; NOTT, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-9177a69e16b1d901f350e114fbfcc96a3139b4547c8755d2dca63a9e98eb91893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied geophysics</topic><topic>Boreholes</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Gamma rays</topic><topic>Geophysical studies</topic><topic>Internal geophysics</topic><topic>Lithology</topic><topic>Spatial analysis</topic><topic>Stratigraphy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEONTE, Daniela</creatorcontrib><creatorcontrib>NOTT, David J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEONTE, Daniela</au><au>NOTT, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian spatial modelling of gamma ray count data</atitle><jtitle>Mathematical geology</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>38</volume><issue>2</issue><spage>135</spage><epage>154</epage><pages>135-154</pages><issn>0882-8121</issn><issn>1874-8961</issn><eissn>1573-8868</eissn><eissn>1874-8953</eissn><coden>MATGED</coden><abstract>Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11004-005-9008-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0882-8121
ispartof Mathematical geology, 2006-02, Vol.38 (2), p.135-154
issn 0882-8121
1874-8961
1573-8868
1874-8953
language eng
recordid cdi_proquest_journals_728070974
source SpringerLink Journals - AutoHoldings
subjects Applied geophysics
Boreholes
Earth sciences
Earth, ocean, space
Environmental engineering
Exact sciences and technology
Gamma rays
Geophysical studies
Internal geophysics
Lithology
Spatial analysis
Stratigraphy
title Bayesian spatial modelling of gamma ray count data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20spatial%20modelling%20of%20gamma%20ray%20count%20data&rft.jtitle=Mathematical%20geology&rft.au=LEONTE,%20Daniela&rft.date=2006-02-01&rft.volume=38&rft.issue=2&rft.spage=135&rft.epage=154&rft.pages=135-154&rft.issn=0882-8121&rft.eissn=1573-8868&rft.coden=MATGED&rft_id=info:doi/10.1007/s11004-005-9008-6&rft_dat=%3Cproquest_cross%3E2092820411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=728070974&rft_id=info:pmid/&rfr_iscdi=true