Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis

Natural genetic variation in Arabidopsis is considerable, but has not yet been used extensively as a source of variants to identify new genes of interest. From the cross between two genetically distant ecotypes, Bay-0 and Shahdara, we generated a Recombinant Inbred Line (RIL) population dedicated to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2002-05, Vol.104 (6), p.1173-1184
Hauptverfasser: Loudet, O., Chaillou, S., Camilleri, C., Bouchez, D., Daniel-Vedele, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural genetic variation in Arabidopsis is considerable, but has not yet been used extensively as a source of variants to identify new genes of interest. From the cross between two genetically distant ecotypes, Bay-0 and Shahdara, we generated a Recombinant Inbred Line (RIL) population dedicated to Quantitative Trait Locus (QTL) mapping. A set of 38 physically anchored microsatellite markers was created to construct a robust genetic map from the 420 F6 lines. These markers, evenly distributed throughout the five chromosomes, revealed a remarkable equilibrium in the segregation of parental alleles in the genome. As a model character, we have analysed the genetic basis of variation in flowering time in two different environments. The simultaneous mapping of both large- and small-effect QTLs responsible for this variation explained 90% of the total genotypic variance. Two of the detected QTLs colocalize very precisely with FRIGIDA and FLOWERING LOCUS C genes; we provide information on the polymorphism of genes confirming this hypothesis. Another QTL maps in a region where no QTL had been found previously for this trait. This confirms the accuracy of QTL detection using the Bay-0 × Shahdara RIL population, which constitutes the largest in size available so far in Arabidopsis. As an alternative to mutant analysis, this population represents a powerful tool which is currently being used to undertake the genetic dissection of complex metabolic pathways.[PUBLICATION ABSTRACT]
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-001-0825-9